
RAUC Documentation
Release v0.2

Jan Luebbe, Enrico Joerns, Juergen Borleis

Feb 01, 2018

Contents

1 Updating your Embedded Device 3

2 RAUC Basics 5

3 Using RAUC 9

4 Examples 17

5 Scenarios 21

6 Integration 25

7 Advanced Topics 39

8 Design Checklist 49

9 Frequently Asked Questions 51

10 Reference 53

11 Terminology 61

12 Contributing 63

13 Changes in RAUC 65

14 The Need for Updating 69

15 What is RAUC? 71

16 And What Not? 73

17 Key Features of RAUC 75

i

ii

RAUC Documentation, Release v0.2

Contents:

Contents 1

RAUC Documentation, Release v0.2

2 Contents

CHAPTER 1

Updating your Embedded Device

This chapter does not explicitly tell you anything about RAUC itself, but it provides an initial overview of basic
requirements and design consideration that have to be taken into account when designing an update architecture for
your embedded device.

Thus, if you know about updating and are interested in RAUC itself, only, simply skip this chapter.

Nevertheless, this chapter could also provide some useful hints that can already be useful when designing the device
you intend to update later on. In this you initial phase you can prevent yourself from making wrong decisions.

1.1 Redundancy and Atomicity

There are two key requirements for allowing you to robustly update your system.

The first one is redundancy: You must not update the system you are currently running on. Otherwise a failure during
updating will brick the only system you can run your update from.

The second one is atomicity: Writing your update to the currently inactive device is a critical operation. A failure
occurring during this installation must not brick your device. Thus you must make sure to tell your boot logic to select
the updated device not before being very sure that the update successfully completed. Additionally, the operation that
switches the boot device must be atomic itself.

1.2 Storage Type and Size

The type and amount of available storage on your device has a huge impact on the design of your updatable embedded
system.

Except when optimizing for the smallest storage requirements possible, your system should have two redundant de-
vices or partitions for your root file-system. This full symmetric setup allows you to run your application while safely
updating the inactive copy. Additionally, if the running system become corrupted for any reason, you may fall back to
you second rootfs device.

3

RAUC Documentation, Release v0.2

If the available storage is not much larger than the space required by your devices rootfs, a full redundant symmetric
A/B setup will not be an option. In this case, you might need to use a rescue system consisting of a minimal kernel
with an appended initramfs to install your updates.

If you can choose the storage technology for your system, DO NOT choose raw NAND flash. NAND (especially
MLC) is complex to handle correctly and comes with a variety of very specific effects that may cause difficult to
debug problem later (if not all details of the storage stack are configured just right). Instead choose eMMC or SSDs,
where the engineers who (hopefully) know the quirks of their technology have created layers that hide this complexity
to you.

If storage size can be freely chosen, calculate for at least 2x the size of your rootfs plus additionally required space,
e.g. for bootloader, (redundant) data storage, etc.

1.3 Security

An update tool or the infrastructure around it should ensure that no unauthorized entity is able to update your device.
This can be done by having:

1. a secure channel to transfer the update or

2. a signed update that allows you to verify its author.

Note that the latter method is more flexible and might be the only option if you intend to use a USB stick for example.

1.4 Interfacing with your Bootloader

The bootloader is the final instance that controls which partition on your rootfs device will be booted. In order to
switch partitions after an update, you have to have an interface to the bootloader that allows you to set the boot order,
boot priority and other possible parameters.

Some bootloaders, such as U-Boot, allow access to their environment storage where you can freely create and modify
variables the bootloader may read. Boot logic often can be implemented by a simple boot script.

Some others have distinct redundancy boot interfaces with redundant state storage. These often provide more fea-
tures than simply switching boot partitions and are less prone to errors when used. The Barebox bootloader with its
bootchooser framework is a good example for this.

1.5 Update Source and Provisioning

Depending on your infrastructure or requirements, an update might be deployed in several ways.

The two most common ones are over network, e.g. by using a deployment server, or simply over a USB stick that will
be plugged into the target system.

4 Chapter 1. Updating your Embedded Device

CHAPTER 2

RAUC Basics

From a top view, the RAUC update framework provides a solution for four basic tasks:

• generating update artifacts

• signing and verification of update artifacts

• robust installation handling

• interfacing with the boot process

RAUC is basically an image-based updater, i.e. it installs file images on devices or partitions. But, for target devices
that can have a file system, it also supports installing contents from tar archives. This often provides much more
flexibility as a tar does not have to fit a specific partition size or type. RAUC ensures that the target file system will be
set up correctly before unpacking the archive.

2.1 Update Artifacts – Bundles

In order to know how to pack multiple file system images, properly handle installation, being able to check system
compatibility and for other meta-information RAUC uses a well-defined update artifact format, simply referred to as
bundles in the following.

A RAUC bundle consists of the file system image(s) or archive(s) to be installed on the system, a manifest that lists
the images to install and contains options and meta-information, and possible scripts to run before, during or after
installation.

To pack this all together, the default bundle format uses SquashFS. This provides good compression while allowing
to mount the bundle without having to unpack it on the target system. This way, no additional intermediate storage is
required.

A key design decision of RAUC is that signing a bundle is mandatory. For development purpose a self-signed certifi-
cate might be sufficient, for production the signing process should be integrated with your PKI infrastructure.

Important: A RAUC Bundle should always unambiguously describe the intended target state of the entire system.

5

RAUC Documentation, Release v0.2

2.2 RAUC’s System View

Apart from bundle signing and verification, the main task of RAUC is to ensure that all images in your update bundle
are copied in the proper way to the proper target device / partition on your board.

In order to allow RAUC to handle your device right, we need to give it the right view on your system.

2.3 Slots

In RAUC, everything that can be updated is a slot. Thus a slot can either be a full device, a partition, a volume or
simply a file.

To let RAUC know which slots exists on the board that should be handled, the slots must be configured in a system
configuration file. This file is the central instance that tells RAUC how to handle the board, which bootloader to use,
which custom scripts to execute, etc.

The slot description names, for example, the file path the slot can be accessed with, the type of storage or filesystem
to use, its identification from the bootloader, etc.

2.4 Target Slot Selection

A very important step when installing an update is to determine the correct mapping from the images that are contained
in a RAUC bundle to the slots that are defined on the target system. The updated must also assure to select an inactive
slot, and not accidentally a slot the system currently runs from.

For this mapping, RAUC allows to define different slot classes. A class describes always multiple redundant slots of
the same type. This can be, for example, a class for root file system slots or a class for application slots.

Note that despite the fact that classic A+B redundancy is a common setup for many systems, RAUC conceptually
allows any number of redundant slots per class.

Now, multiple slots of different classes can be grouped as a slot group. Such a group is the base for the slot selection
algorithm of RAUC.

Consider, for example, a system with two redundant rootfs slots and two redundant application slots. Then you group
them together to have a fixed set of a rootfs and application slot each that will be used together.

To detect the active slots, RAUC attempts to detect the currently booted slot. For this, it relies on explicit mapping
information provided via kernel command line or attempts to find it out using mount information.

All slots of the group containing the active slot will be considered active, too.

2.5 Slot Status and Skipping Slot Updates

RAUC hashes each image or archive when packing it into a bundle and stores this hash in the bundle’s manifest file.
This hash allows to reliably identify and distinguish the image’s content.

When installing an image to a writable file system, RAUC will write an additional slot status file after having completed
the write operation successfully. This file contains the slots hash.

6 Chapter 2. RAUC Basics

RAUC Documentation, Release v0.2

The next time RAUC attempts to install an image to this slot, it will first check the current hash of the slot by reading
its status file, if possible. If this hash equals the hash of the image to write, RAUC will skip updating this slot as a
performance optimization.

This is especially useful when having a setup with, for example, two redundant application file systems and two
redundant root file systems. In case you update the application file system content much more frequently, RAUC will
save update time by skipping the root file system automatically and only installing the changed application.

2.6 Boot Slot Selection

A system designed to run from redundant slots must always have a component that is responsible for selecting between
the bootable slots. Usually, this will be some kind of bootloader, but it could also be an initramfs booting a special
purpose Linux system.

Of course, as a normal user-space tool, RAUC cannot do the selection itself, but provides a well-defined interface and
abstraction for interacting with different bootloaders (e.g. GRUB, Barebox, U-Boot) or boot selection methods.

In order to enable RAUC to switch the correct slot, its system configuration must specify the name of the respective slot
from the bootloader’s perspective. You also have to set up an appropriate boot selection logic in the bootloader itself,
either by scripting (as for GRUB, U-Boot) or by using dedicated boot selection infrastructure (such as bootchooser in
Barebox).

The bootloader must also provide a set of variables the Linux userspace can modify in order to change boot order or
priority.

Having this interface ready, RAUC will care for setting the boot logic appropriately. It will, for example, deactivate
the slot to update before writing to it and reactivate it after having completed the installation successfully.

2.7 Installation and Storage Handling

As mentioned above, RAUC basically writes images to devices or partitions, but also allows installing file system
content from (compressed) tar archives.

In addition to the need for different methods to write to storage (simple copy for block devices, nandwrite for NAND,
ubiupdatevol for UBI volumes, . . .) the tar-based installation requires additional handling and prepartation of storage.

Thus, the possible and required handling depends on both the type of input image (e.g. .tar.xz, .ext4, .img) as well as
the type of storage. A tar can be installed on different file systems while an ext4 file system slot might be filled by
both an .ext4 image or a tar archive.

To deal with all these possible combinations, RAUC provides an update handler algorithm that uses a matching table
to define valid combinations of image and slot type while specifying the appropriate handling.

2.8 Boot Confirmation & Fallback

When designing a robust redundant system, update handling does not end with the successful installation of the update
on the target slots! Having written your image data without any errors does not mean that the system you just installed
will really boot. And even if it boots, there may be crashes or invalid behavior only revealed at runtime or possibly not
before a number of days and reboots.

2.6. Boot Slot Selection 7

RAUC Documentation, Release v0.2

To allow the boot logic to detect if booting a slot succeeded or failed, it needs to receive some feedback from the booted
system. For marking a boot as either successful or bad, RAUC provides the commands status mark-good and status
mark-bad. These commands interact through the boot loader interface with the respective bootloader implementation
to indicate a successful or failed boot.

As detecting an invalid boot is often not possible, i.e. because simply nothing boots or the booted system suddenly
crashes, your system should use a hardware watchdog to during boot and have support in the bootloader to detect
watchdog resets as failed boots.

Also you need to define what happens when a boot slot is detected to be unusable. For most cases it might be desired
to either select one of the redundant slots as fallback or boot into a recovery system. This handling is up to your
bootloader.

8 Chapter 2. RAUC Basics

CHAPTER 3

Using RAUC

For using RAUC in your embedded project, you will need to build at least two versions of it:

• One for your host (build or development) system. This will allow you to create, inspect and modify bundles.

• One for your target system. This can act both as the service for handling the installation on your system,
as a command line tool that allows triggering the installation and inspecting your system or obtaining bundle
information.

All common embedded Linux build system recipes for RAUC will solve the task of creating appropriate binaries for
you as well as caring for bundle creation and partly system configuration. If you intend to use RAUC with Yocto, use
the meta-rauc layer, in case you use PTXdist, simply enable RAUC in your configuration.

Note: When using the RAUC service from your application, the D-Bus interface is preferable to using the provided
command-line tool.

3.1 Creating Bundles

To create an update bundle on your build host, RAUC provides the bundle sub-command:

rauc bundle --cert=<certfile> --key=<keyfile> <input-dir> <output-file>

Where <input-dir> must be a directory containing all images and scripts the bundle should include, as well as a
manifest file manifest.raucm that describes the content of the bundle for the RAUC updater on the target: which
image to install to which slot, which scripts to execute etc. <output-file> must be the path of the bundle file to
create. Note that RAUC bundles must always have a .raucb file name suffix in order to ensure that RAUC treats
them as bundles.

9

https://github.com/rauc/meta-rauc

RAUC Documentation, Release v0.2

3.2 Obtaining Bundle Information

rauc info [--output-format=<format>] <input-file>

The info command lists the basic meta data of a bundle (compatible, version, build-id, description) and the images
and hooks contained in the bundle.

You can control the output format depending on your needs. By default it will print a human readable representa-
tion of the bundle not intended for being processed programmatically. Alternatively you can obtain a shell-parsable
description or a JSON representation of the bundle content.

3.3 Installing Bundles

To actually install an update bundle on your target hardware, RAUC provides the install command:

rauc install <input-file>

Alternatively you can trigger a bundle installation via D-Bus.

3.4 Viewing the System Status

For debugging purposes and for scripting it is helpful to gain an overview of the current system as RAUC sees it. The
status command allows this:

rauc status [--output-format=<format>]

You can choose the output style of RAUC status depending on your needs. By default it will print a human readable
representation of your system. Alternatively you can obtain a shell-parsable description, or a JSON representation of
the system status.

3.5 React to a Successfully Booted System/Failed Boot

Normally, the full system update chain is not complete before being sure that the newly installed system runs without
any errors. As the definition and detection of a successful operation is really system-dependent, RAUC provides
commands to preserve a slot as being the preferred one to boot or to discard a slot from being bootable.

rauc status mark-good

After verifying that the currently booted system is fully operational, one wants to signal this information to the under-
lying bootloader implementation which then, for example, resets a boot attempt counter.

rauc status mark-bad

If the current boot failed in some kind, this command can be used to communicate that to the underlying bootloader
implementation. In most cases this will disable the currently booted slot or at least switch to a different one.

Although not very useful in the field, both commands recognize an optional argument to explicitely identify the slot
to act on:

10 Chapter 3. Using RAUC

RAUC Documentation, Release v0.2

rauc status mark-{good,bad} [booted | other | <SLOT_NAME>]

This is to maintain consistency with respect to rauc status mark-active where that argument is definitively
wanted, see here.

3.6 Manually Switch to a Different Slot

One can think of a variety of reasons to switch the preferred slot for the next boot by hand, for example:

• Recurrently test the installation of a bundle in development starting from a known state.

• Activate a slot that has been installed sometime before and whose activation has explicitely been prevented at
that time using the system configuration file’s parameter activate-installed.

• Switch back to the previous slot because one really knows better™.

To do so, RAUC offers the subcommand

rauc status mark-active [booted | other | <SLOT_NAME>]

where the optional argument decides which slot to (re-)activate at the expense of the remaining slots. Choosing other
switches to the next bootable slot that is not the one that is currently booted. In a two-slot-setup this is just. . . the
other one. If one wants to explicitely address a known slot, one can do so by using its slot name which has the form
<slot-class>.<idx> (e.g. rootfs.1), see this part of section System Configuration File. Last but not least,
after switching to a different slot by mistake, before having rebooted this can be remedied by choosing booted as
the argument which is, by the way, the default if the optional argument has been omitted.

3.7 Customizing the Update

RAUC provides several ways to customize the update process. Some allow adding and extending details more fine-
grainedly, some allow replacing major parts of the default behavior of RAUC.

In general, there exist three major types of customization: configuration, handlers and hooks.

The first is configuration through variables. This allow controlling the update in a predefined way.

The second type is using handlers. Handlers allow extending or replacing the installation process. They are executables
(most likely shell scripts) located in the root filesystem and configured in the system’s configuration file. They control
static behavior of the system that should remain the same over future updates.

The last type are hooks. They are similar to handlers, except that they are contained in the update bundle. Thus they
allow to flexibly extend or customize one or more updates by some special behavior. A common example would be
using a per-slot post-install hook that handles configuration migration for a new software version. Hooks are especially
useful to handle details of installing an update which were not considered in the previously deployed version.

In the following, handlers and hooks will be explained in more detail.

3.7.1 System Configuration File

Beside providing the basic slot layout, RAUC’s system configuration file also allows you to configure parts of its
runtime behavior, such as handlers (see below), paths, etc. For a detailed list of possible configuration options, see
System Configuration File section in the Reference chapter.

3.6. Manually Switch to a Different Slot 11

RAUC Documentation, Release v0.2

3.7.2 System-Based Customization: Handlers

For a detailed list of all environment variables exported for the handler scripts, see the Custom Handlers (Interface)
section.

Pre-Install Handler

[handlers]
pre-install=/usr/lib/rauc/pre-install

RAUC will call the pre-install handler (if given) during the bundle installation process, right before calling the default
or custom installation process. At this stage, the bundle is mounted, its content is accessible and the target group has
been determined successfully.

If calling the handler fails or the handler returns a non-zero exit code, RAUC will abort installation with an error.

Post-Install Handler

[handlers]
post-install=/usr/lib/rauc/post-install

The post install handler will be called right after RAUC successfully performed a system update. If any error occurred
during installation, the post-install handler will not be called.

Note that a failed call of the post-install handler or a non-zero exit code will cause a notification about the error but
will not change the result of the performed update anymore.

A possible usage for the post-install handler could be to trigger an automatic restart of the system.

System-Info Handler

[handlers]
system-info=/usr/lib/rauc/system-info

The system-info handler is called after loading the configuration file. This way it can collect additional variables from
the system, like the system’s serial number.

The handler script must return a system serial number by echoing RAUC_SYSTEM_SERIAL=<value> to standard out.

3.7.3 Bundle-Based Customization: Hooks

Unlike handlers, hooks allow the author of a bundle to add or replace functionality for the installation of a specific
bundle. This can be useful for performing additional migration steps, checking for specific previously installed bundle
versions or for manually handling updates of images RAUC cannot handle natively.

To reduce the complexity and number of files in a bundle, all hooks must be handled by a single executable that is
registered in the bundle’s manifest:

[hooks]
filename=hook

12 Chapter 3. Using RAUC

RAUC Documentation, Release v0.2

Each hook must be activated explicitly and leads to a call of the hook executable with a specific argument that allows
to distinguish between the different hook types. Multiple hook types must be separated with a ;.

In the following the available hooks are listed. Depending on their purpose, some are image-specific, i.e. they will be
executed for the installation of a specific image only, while some other are global.

Install Hooks

Install hooks operate globally on the bundle installation.

The following environment variables will be passed to the hook executable:

RAUC_SYSTEM_COMPATIBLE The compatible value set in the system configuration file

RAUC_MF_COMPATIBLE The compatible value provided by the current bundle

RAUC_MF_VERSION The value of the version field as provided by the current bundle

RAUC_MOUNT_PREFIX The global RAUC mount prefix path

Install-Check Hook

[hooks]
filename=hook
hooks=install-check

This hook will be executed instead of the normal compatible check in order to allow performing a custom compatibility
check based on compatible and/or version information.

To indicate that a bundle should be rejected, the script must return with an exit code >= 10.

If available, RAUC will use the last line printed to standard error by the hook executable as the rejection reason
message and provide it to the user:

#!/bin/sh

case "$1" in
install-check)

if [["$RAUC_MF_COMPATIBLE" != "$RAUC_SYSTEM_COMPATIBLE"]]; then
echo "Comptaible does not match!" 1>&2
exit 10

fi
;;

*)
exit 1
;;

esac

exit 0

Slot Hooks

Slot hooks are called for each slot an image will be installed to. In order to enable them, you have to specify them in
the hooks key under the respective image section.

Note that hook slot operations will be passed to the executable with the prefix slot-. Thus if you intend to check for
the pre-install hook, you have to check for the argument to be slot-pre-install.

3.7. Customizing the Update 13

RAUC Documentation, Release v0.2

The following environment variables will be passed to the hook executable:

RAUC_SLOT_NAME The name of the currently installed slot

RAUC_SLOT_CLASS The class of the currently installed slot

RAUC_SLOT_DEVICE The device of the currently installed slot

RAUC_SLOT_BOOTNAME If set, the bootname of the currently installed slot

RAUC_SLOT_PARENT If set, the parent of the currently installed slot

RAUC_SLOT_MOUNT_POINT If available, the mount point of the currently installed slot

RAUC_IMAGE_NAME If set, the file name of the image currently to be installed

RAUC_IMAGE_DIGEST If set, the digest of the image currently to be installed

RAUC_IMAGE_CLASS If set, the target class of the image currently to be installed

RAUC_MOUNT_PREFIX The global RAUC mount prefix path

Pre-Install Hook

The pre-install hook will be called right before the update procedure for the respective slot will be started. For slot
types that represent a mountable file system, the hook will be executed with having the file system mounted.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=pre-install

Post-Install Hook

The post-install hook will be called right after the update procedure for the respective slot was finished successfully.
For slot types that represent a mountable file system, the hook will be executed with having the file system mounted.
This allows to write some post-install information to the slot. It is also useful to copy files from the currently active
system to the newly installed slot, for example to preserve application configuration data.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=post-install

An example on how to use a post-install hook:

#!/bin/sh

case "$1" in
slot-post-install)

only rootfs needs to be handled

14 Chapter 3. Using RAUC

RAUC Documentation, Release v0.2

test "$RAUC_SLOT_CLASS" = "rootfs" || exit 0

touch "$RAUC_SLOT_MOUNT_POINT/extra-file"
;;

*)
exit 1
;;

esac

exit 0

Install Hook

The install hook will replace the entire default installation process for the target slot of the image it was specified
for. Note that when having the install hook enabled, pre- and post-install hooks will not be executed. The install
hook allows to fully customize the way an image is installed. This allows performing special installation methods that
are not natively supported by RAUC, for example to upgrade the bootloader to a new version while also migrating
configuration settings.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=install

3.7.4 Full Custom Update

For some special tasks (recovery, testing, migration) it might be required to completely replace the default RAUC
update mechanism and to only use its infrastructure for executing an application or a script on the target side.

For this case, you may replace the entire default installation handler of rauc by a custom handler script or application.

Refer system.conf [handler] section description on how to achieve this.

3.8 Using the D-Bus API

The RAUC D-BUS API allows seamless integration into existing or project-specific applications, incorporation with
bridge services such as the rauc-hawkbit client and also the rauc CLI uses it.

The API’s service domain is de.pengutronix.rauc while the object path is /.

The D-Bus API’s main purpose is to trigger and monitor the installation process via its Installer interface. While
the Install operation starts the installation progress, constant progress information will be emitted in form of
changes to the Progress property. Upon completing the installation RAUC emits the Completed signal indicating
either successful or failed installation.

3.8. Using the D-Bus API 15

RAUC Documentation, Release v0.2

3.8.1 Processing Progress Data

The progress property will be updated upon each change of the progress value. For details see the The “Progress”
Property chapter in the reference documentation.

To monitor Progress property changes from your application, attach to the PropertiesChanged signal and
filter on the Operation properties.

Each progress step emitted is a tuple (percentage, message, nesting depth) describing a tree of
progress steps:

"Installing" (0%)
"Determining slot states" (0%)
"Determining slot states done." (20%)
"Checking bundle" (20%)

"Verifying signature" (20%)
"Verifying signature done." (40%)

"Checking bundle done." (40%)
...

"Installing done." (100%)

This hierarchical structure allows applications to decide for the appropriate granularity to display information.
Progress messages with a nesting depth of 1 are only Installing and Installing done.. A nesting depth of
2 means more fine-grained information while larger depths are even more detailed.

Additionally, the nesting depth information allows the application to print tree-like views as shown above. The
percentage value always goes from 0 to 100 while the message is always a human-readable English string.
For internationalization you may use a gettext-based approach.

3.8.2 Examples Using busctl Command

Triggering an installation:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer Install s "/path/to/
→˓bundle"

Get the Operation property containing the current operation:

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer Operation

Get the Progress property containing the progress information:

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer Progress

Get the LastError property, which contains the last error that occurred during an installation.

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer LastError

Monitor the D-Bus interface

busctl monitor de.pengutronix.rauc

16 Chapter 3. Using RAUC

https://www.gnu.org/software/gettext/

CHAPTER 4

Examples

This chapter aims to explain the basic concepts needed for RAUC using a simple but realistic scenario.

The system is x86-based with 1GiB of disk space and 1GiB of RAM. GRUB was selected as the bootloader and we
want to have two symmetric installations. Each installation consists of an ext4 root file system only (which contains
the matching kernel image).

We want to provide update bundles using a USB memory stick. We don’t have a hardware watchdog, so we need to
explicitly tell GRUB whether a boot was successful.

This scenario can be easily reproduced using a QEMU virtual machine.

4.1 PKI Setup

RAUC uses an x.509 PKI (public key infrastructure) to sign and verify updates. To create a simple key pair for testing,
we can use openssl:

> openssl req -x509 -newkey rsa:4096 -nodes -keyout demo.key.pem -out demo.cert.pem -
→˓subj "/O=rauc Inc./CN=rauc-demo"

For actual usage, setting up a real PKI (with a CA separate from the signing keys and a revocation infrastructure) is
strongly recommended. OpenVPN’s easy-rsa is a good first step. See Security for more details.

4.2 RAUC Configuration

We need a RAUC system configuration file to describe the slots which can be updated

[system]
compatible=rauc-demo-x86
bootloader=grub
mountprefix=/mnt/rauc

17

https://www.gnu.org/software/grub/
https://www.gnu.org/software/grub/
http://wiki.qemu.org/
https://github.com/OpenVPN/easy-rsa

RAUC Documentation, Release v0.2

[keyring]
path=demo.cert.pem

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

In this case, we need to place the signing certificate into /etc/rauc/demo.cert.pem, so that it is used by RAUC
for verification.

4.3 GRUB Configuration

GRUB itself is stored on /dev/sda1, separate from the root file system. To access GRUB’s environment file, this
partition should be mounted to /boot (which means that the environment file is found at /boot/grub/grubenv).

GRUB does not provide the boot target selection logic as needed by RAUC out of the box. Instead we use a script to
implement it

default=0
timeout=3

set ORDER="A B"
set A_OK=0
set B_OK=0
set A_TRY=0
set B_TRY=0
load_env

select bootable slot
for SLOT in $ORDER; do

if ["$SLOT" == "A"]; then
INDEX=0
OK=$A_OK
TRY=$A_TRY
A_TRY=1

fi
if ["$SLOT" == "B"]; then

INDEX=1
OK=$B_OK
TRY=$B_TRY
B_TRY=1

fi
if ["$OK" -eq 1 -a "$TRY" -eq 0]; then

default=$INDEX
break

fi
done

reset booted flags
if ["$default" -eq 0]; then

18 Chapter 4. Examples

RAUC Documentation, Release v0.2

if ["$A_OK" -eq 1 -a "$A_TRY" -eq 1]; then
A_TRY=0

fi
if ["$B_OK" -eq 1 -a "$B_TRY" -eq 1]; then

B_TRY=0
fi

fi

save_env A_TRY B_TRY

CMDLINE="panic=60 quiet"

menuentry "Slot A (OK=$A_OK TRY=$A_TRY)" {
linux (hd0,2)/kernel root=/dev/sda2 $CMDLINE rauc.slot=A

}

menuentry "Slot B (OK=$B_OK TRY=$B_TRY)" {
linux (hd0,3)/kernel root=/dev/sda3 $CMDLINE rauc.slot=B

}

GRUB since 2.02-beta1 supports the eval command, which can be used to express the logic above more concisely.

The grubenv file can be modified using grub-editenv, which is shipped by GRUB. It can also be used to inspect
the current contents:

> grub-editenv /boot/grub/grubenv list
ORDER="A B"
A_OK=0
B_OK=0
A_TRY=0
B_TRY=0

The initial installation of the bootloader and rootfs on the system is out of scope for RAUC. A common approach is
to generate a complete disk image (including the partition table) using a build system such as OpenEmbedded/Yocto,
PTXdist or buildroot.

4.4 Bundle Generation

To create a bundle, we need to collect the components which should become part of the update in a directory (in this
case only the root file system image):

> mkdir temp-dir/
> cp .../rootfs.ext4.img temp-dir/

Next, to describe the bundle contents to RAUC, we create a manifest file. This must be named manifest.raucm:

> cat >> temp-dir/manifest.raucm << EOF
[update]
compatible=rauc-demo-x86
version=2015.04-1

[image.rootfs]
filename=rootfs.ext4.img
EOF

4.4. Bundle Generation 19

RAUC Documentation, Release v0.2

Note that we can omit the sha256 and size parameters for the image here, as RAUC will fill them out automatically
when creating the bundle.

Finally, we run RAUC to create the bundle:

> rauc --cert demo.cert.pem --key demo.key.pem bundle temp-dir/ update-2015.04-1.raucb
> rm -r temp-dir

We now have the update-2015.04-1.raucb bundle file, which can be copied onto the target system, in this case
using a USB memory stick.

4.5 Update Installation

Having copied update-2015.04-1.raucb onto the target, we only need to run RAUC:

> rauc install /mnt/usb/update-2015.04-1.raucb

After cyptographically verifying the bundle, RAUC will now determine the active slots by looking at the rauc.slot
variable. Then, it can select the target slot for the update image from the inactive slots.

When the update is installed completely, we just need to restart the system. GRUB will then try to boot the newly
installed rootfs. Finally, if the boot was successful, we need to inform the bootloader:

> rauc status mark-good

If systemd is available, it is useful to run this command late in the boot process and declare dependencies on the main
application(s).

If the boot is not marked as successful, GRUB will try the other installation on the next boot. By configuring the kernel
and systemd to reboot on critical errors and by using a (software) watchdog, hangs in a non-working installation can
be avoided.

4.6 Example BSPs

• Yocto

• PTXdist

20 Chapter 4. Examples

http://www.freedesktop.org/wiki/Software/systemd/

CHAPTER 5

Scenarios

5.1 Symmetric Root-FS Slots

This is the probably the most common setup. In this case, two root partitions of the same size are used (often called
“A” and “B”). When running from “A”, an update is installed into “B” and vice versa. Both slots are intended to
contain equivalent software, including the main application.

To reduce complexity, the kernel and other files necessary for booting the system (such as the device tree) are stored
in the root-fs partition (usually in /boot). This requires a boot-loader with support for the root-fs type.

The RAUC system.conf would contain two slots similar to the following:

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system-a

[slot.rootfs.1]
device=/dev/sda1
type=ext4
bootname=system-b

The main advantage of this setup is its simplicity:

• An update can be started when running in either slot and while the main application is still active.

• The fallback logic in the boot-loader can be relatively simple.

• Easy to understand update process for end-users and technicians.

The main reasons for not using it are either:

• Too limited storage space (use asymmetric slots instead)

• Additional requirements regarding redundancy or update flexibility (see below)

21

RAUC Documentation, Release v0.2

5.2 Asymmetric Slots

This setup is useful if the storage space is very limited. Instead of requiring two partitions each large enough for the
full installation, a small partition is used instead of the second one (often called “main” and “update” or “rescue”).

The slot configuration for this in system.conf could look like this:

[slot.update.0]
device=/dev/sda0
type=raw
bootname=update

[slot.main.1]
device=/dev/sda1
type=ext4
bootname=main

To update the main system, a reboot into the update system is needed (as otherwise the main slot would still be active).
Then, the update system would trigger the installation into the main slot and finally switch back to the newly updated
main system. The update system itself can be updated directly from the running main system.

Some disadvantages of this configuration are:

• Two reboots are required for an update.

• A failed update results in an unavailable main application until a subsequent update is installed successfully.

• If some data in the main slot needs to be preserved during the update, it must be stored somewhere else before
writing the new image to the slot and then restored.

As the update system is normally small enough to fit completely into RAM, it can be stored as a Linux kernel with
internal initramfs. This avoids compressing kernel and user-space separately, increasing the compression ratio. For
this, the update slot type should be configured to raw.

5.3 Multiple Slots

Splitting a system into multiple slots can be useful if the application should be updated independently of the base
system. This can be combined with either symmetric or asymmetric setups as described above.

For example, the main application could be split of from the root file-system. This can be useful if the base system
is developed independently from the application(s) or by a different team. By explicitly distinguishing between the
two, different versions of the application or even completely different applications can reuse the same base system
(root-file-system).

Another reason to configure multiple slots for one system can be to store the boot files (kernel, . . .) separately, which
can help reduce boot time and complexity in the boot-loader.

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system-a

[slot.appfs.0]
device=/dev/sda1
type=ext4
parent=rootfs.0

22 Chapter 5. Scenarios

RAUC Documentation, Release v0.2

[slot.rootfs.1]
device=/dev/sdb0
type=ext4
bootname=system-b

[slot.appfs.1]
device=/dev/sdb1
type=ext4
parent=rootfs.1

Warning: Currently, RAUC has no way to ensure compatibility between rootfs and appfs when installing a bundle
containing only an image for one of them. Either always build bundles containing images for all required slots or
ensure that incompatible updates are not installed outside of RAUC. To solve this, a bundle would need to contain
the metadata (size and hash) for the missing bundle and RAUC would need to verify the state of those slots before
installing the bundle.

5.4 Additional Rescue Slot

By adding an additional rescue (or recovery) slot to one of the symmetric scenarios above, the robustness against some
error cases can be improved:

• A software error has remained undetected over some releases, rendering both normal slots inoperable over time.

• The normal slots are mounted read-write during normal operation and have become corrupted (for example by
incorrect handling of sudden power failures).

• A configuration error causes both normal slots to fail in the same way.

[slot.rescue.0]
device=/dev/sda0
type=raw
bootname=rescue

[slot.rootfs.0]
device=/dev/sda1
type=ext4
bootname=system-a

[slot.rootfs.1]
device=/dev/sda2
type=ext4
bootname=system-b

The rescue slot would not be changed by normal updates (which only write to A and B in turn). Depending on the
use case, the boot-loader would start the rescue system after repeated boot failures of the normal systems or on user
request.

5.4. Additional Rescue Slot 23

RAUC Documentation, Release v0.2

24 Chapter 5. Scenarios

CHAPTER 6

Integration

• RAUC System Configuration

– Slot Configuration

• Kernel Configuration

• Required Target Tools

• Interfacing with the Bootloader

– Barebox

– U-Boot

– GRUB

– EFI

– Others

• Init System and Service Startup

– Systemd Integration

• D-Bus Integration

• Watchdog Configuration

• Yocto

– Target System Setup

– Using RAUC on the Host System

– Bundle Generation

• PTXdist

– Integration into Your RootFS Build

25

RAUC Documentation, Release v0.2

– Create Update Bundles from your RootFS

If you intend to prepare your platform for using RAUC as an update framework, this chapter will guide you through
the required steps and show the different ways you can choose.

To integrate RAUC, you first need to be able to build RAUC as both a host and a target application. The host application
is needed for generating update bundles while the target application or service performs the core task of RAUC:
updating you device.

In an update system, a lot of components have to play together and have to be configured appropriately to interact
correctly. In principle, these are:

• Hardware setup, devices, partitions, etc.

• The bootloader

• The Linux kernel

• The init system

• System utilities (mount, mkfs, . . .)

• The update tool, RAUC itself

Note: When integrating RAUC into your embedded Linux system, and in general, we highly recommend using a
Linux system build system like Yocto / OpenEmbedded or PTXdist that allows you to have well defined software
states while easing integration of the different components involved.

For information about how to integrate RAUC using these tools, refer to the sections Yocto or PTXdist.

6.1 RAUC System Configuration

The system configuration file is the central configuration in RAUC that abstracts the loosely coupled storage setup,
partitioning and boot strategy of your board to a coherent redundancy setup world view for RAUC.

RAUC expects its central configuration file /etc/rauc/system.conf to describe the system it runs on in a way
that all relevant information for performing updates and making decisions are given.

Note: For a full reference of the system.conf file refer to section System Configuration File.

Similar to other configuration files used by RAUC, the system configuration uses a key-value syntax (similar to those
known from .ini files).

6.1.1 Slot Configuration

The most important step is to describe the slots that RAUC should use when performing updates. Which slots are
required and what you have to take care of when designing your system will be covered in the chapter Scenarios. This
section assumes that you have already decided on a setup and want to describe it for RAUC.

A slot is defined by a slot section. The naming of the section must follow a simple format: [slot.<slot-class>.
<slot-index>] where <slot-class> describes a class of possibly multiple redundant slots (such as rootfs,
recovery or appfs) and slot-index is the index of the individual slot instance, starting with index 0.

26 Chapter 6. Integration

RAUC Documentation, Release v0.2

If you have two redundant slots used for the root file system, for example, you should name your sections according
to this example:

[slot.rootfs.0]
device = [...]

[slot.rootfs.1]
device = [...]

RAUC does not have predefined class names. The only requirement is that the class names used in the system config
match those you later use in the update manifests.

The mandatory settings for each slot are:

• the device that holds the (device) path describing where the slot is located,

• the type that defines how to update the target device.

If the slot is bootable, then you also need

• the bootname which is the name the bootloader uses to refer to this slot device.

Slot Type

A list of slot storage types currently supported by RAUC:

Type Description Tar support
raw A partition holding no (known) file system. Only raw image copies may be performed.
ext4 A block device holding an ext4 filesystem. x
nand A raw NAND partition.
ubivol An UBI partition in NAND.
ubifs An UBI volume containing an UBIFS in NAND. x
vfat A block device holding a vfat filesystem.. x

Grouping Slots

If multiple slots belong together in a way that they always have to be updated together with the respective other slots,
you can ensure this by grouping slots.

A group must always have a single bootable slot, then all other slots define a parent relationship to this bootable slot
as follows:

[slot.rootfs.0]
...

[slot.appfs.0]
parent = rootfs.0
...

[slot.rootfs.1]
...

[slot.appfs.1]
parent = rootfs.1
...

6.1. RAUC System Configuration 27

RAUC Documentation, Release v0.2

6.2 Kernel Configuration

The kernel used on the target device must support both loop block devices and the SquashFS file system to allow
installing RAUC bundles.

In kernel Kconfig you have to enable the following options:

CONFIG_BLK_DEV_LOOP=y
CONFIG_SQUASHFS=y

6.3 Required Target Tools

RAUC requires and uses a set of target tools depending on the type of supported storage and used image type.

Note that build systems may handle parts of these dependencies automatically, but also in this case you will have to
select some of them manually as RAUC cannot fully know how you intend to use your system.

NAND Flash nandwrite (from mtd-utils)

UBIFS mkfs.ubifs (from mtd-utils)

TAR archives You may either use GNU tar or Busybox tar.

If you intend to use Busybox tar, make sure format autodetection and also the compression formats
you use are enabled:

• CONFIG_FEATURE_TAR_AUTODETECT=y

• CONFIG_FEATURE_SEAMLESS_XZ=y

ext2/3/4 mkfs.ext2/3/4 (from e2fsprogs)

vfat mkfs.vfat (from dosfstools)

6.4 Interfacing with the Bootloader

RAUC provides support for interfacing with different types of bootloaders. To select the bootloader you have or intend
to use on your system, set the bootloader key in the [system] section of your device’s system.conf.

Note: If in doubt about choosing the right bootloader, we recommend to use Barebox as it provides a dedicated boot
handling framework, called bootchooser.

To let RAUC handle a bootable slot, you have to mark it as bootable in your system.conf and configure the name
under which the bootloader identifies this specific slot. This is both done by setting the bootname property.

[slot.rootfs.0]
...
bootname=system0

6.4.1 Barebox

The Barebox bootloader, which is available for many common embedded platforms, provides a dedicated boot source
selection framework, called bootchooser, backed by an atomic and redundant storage backend, named state.

28 Chapter 6. Integration

git://git.infradead.org/mtd-utils.git
git://git.infradead.org/mtd-utils.git
http://www.gnu.org/software/tar/
http://www.busybox.net
git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git
https://github.com/dosfstools/dosfstools
http://www.barebox.org

RAUC Documentation, Release v0.2

Barebox state allows you to save the variables required by bootchooser with memory specific storage strategies in all
common storage medias, such as block devices, mtd (NAND/NOR), EEPROM, and UEFI variables.

The Bootchooser framework maintains information about priority and remaining boot attemps while being config-
urable on how to deal with them for different strategies.

To enable the Barebox bootchooser support in RAUC, select it in your system.conf:

[system]
...
bootloader=barebox

Configure Barebox

As mentioned above, Barebox support requires you to have the bootchooser framework with barebox state backend
enabled. In Barebox’ Kconfig you can enable this by setting:

CONFIG_BOOTCHOOSER=y
CONFIG_STATE=y
CONFIG_STATE_DRV=y

To debug and interact with bootchooser and state in Barebox, you should also enable these tools:

CONFIG_CMD_STATE=y
CONFIG_CMD_BOOTCHOOSER=y

Setup Barebox Bootchooser

The barebox bootchooser framework allows you to specify a number of redundant boot targets that should be auto-
matically selected by an algorithm, based on status information saved for each boot target.

The bootchooser itself can be used as a Barebox boot target. This is where we start by setting the barebox default boot
target to bootchooser:

nv boot.default="bootchooser"

Now, when Barebox is initialized it starts the bootchooser logic to select its real boot target.

As a next step, we need to tell bootchooser which boot targets it should handle. These boot targets can have descriptive
names which must not equal any of your existing boot targets, we will have a mapping for this later on.

In this example we call the virtual bootchooser boot targets system0 and system1:

nv bootchooser.targets="system0 system1"

Now connect each of these virtual boot targets to a real Barebox boot target (one of its automagical ones or custom
boot scripts):

nv bootchooser.system0.boot="nand0.ubi.system0"
nv bootchooser.system1.boot="nand0.ubi.system1"

To configure bootchooser to store the variables in Barebox state, you need to configure the state_prefix:

nv bootchooser.state_prefix="state.bootstate"

6.4. Interfacing with the Bootloader 29

RAUC Documentation, Release v0.2

Beside this very basic configuration variables, you need to set up a set of other general and slot-specific variables.

Warning: It is highly recommended to read the full Barebox bootchooser documentation in order to know about
the requirements and possibilities in fine-tuning the behavior according to your needs.

Also make sure to have these nv settings in your compiled-in environment, not in your device-local environment.

Setting up Barebox State for Bootchooser

For storing its status information, the botchooser framework requires a barebox,state instance to be set up with a set
of variables matching the set of virtual boot targets defined.

To allow loading the state information in a well-defined format both from Barebox and from the kernel, we store the
state data format definition in the Barebox devicetree.

Barebox fixups the information into the Linux devicetree when loading the kernel. This assures having a consistent
view on the variables in Barebox and Linux.

An example devicetree node for our simple redundant setup will have the following basic structure:

state {
bootstate {
system0 {
...
};
system1 {
...
};

};
};

In the state node, we set the appropriate compatible to tell the barebox,state driver to care for it and define where and
how we want to store our data. This will look similar to this:

state: state {
magic = <0x4d433230>;
compatible = "barebox,state";
backend-type = "raw";
backend = <&state_storage>;
backend-stridesize = <0x40>;
backend-storage-type = "circular";
#address-cells = <1>;
#size-cells = <1>;

[...]
}

where <&state_storage> is a phandle to, e.g. an EEPROM or NAND partition.

Important: The devicetree only defines where and in which format the data will be stored. By default, no data will
be stored in the deviectree itself!

The rest of the variable set definition will be made in the bootstate subnode.

For each virtual boot target handled by state, two uint32 variables remaining_attempts and priority need to
be defined.:

30 Chapter 6. Integration

http://barebox.org/doc/latest/user/bootchooser.html

RAUC Documentation, Release v0.2

bootstate {

system0 {
#address-cells = <1>;
#size-cells = <1>;

remaining_attempts@0 {
reg = <0x0 0x4>;
type = "uint32";
default = <3>;

};
priority@4 {

reg = <0x4 0x4>;
type = "uint32";
default = <20>;

};
};

[...]
};

Note: As the example shows, you must also specify some useful default variables the state driver will load in case of
uninitialized backend storage.

Additionally one single variable for storing information about the last chosen boot target is required:

bootstate {

[...]

last_chosen@10 {
reg = <0x10 0x4>;
type = "uint32";

};
};

Warning: This example shows only a highly condensed excerpt of setting up Barebox state for bootchooser. For a
full documentation on how Barebox state works and how to properly integrate it into your platform see the official
Barebox State Framework user documentation as well as the corresponding devicetree binding reference!

You can verify your setup by calling devinfo state from Barebox, which would print this for example:

barebox@board:/ devinfo state
Parameters:
bootstate.last_chosen: 2 (type: uint32)
bootstate.system0.priority: 10 (type: uint32)
bootstate.system0.remaining_attempts: 3 (type: uint32)
bootstate.system1.priority: 20 (type: uint32)
bootstate.system1.remaining_attempts: 3 (type: uint32)
dirty: 0 (type: bool)
save_on_shutdown: 1 (type: bool)

Once you have set up bootchooser properly, you finally need to enable RAUC to interact with it.

6.4. Interfacing with the Bootloader 31

http://www.barebox.org/doc/latest/user/state.html
http://www.barebox.org/doc/latest/devicetree/bindings/barebox/barebox,state.html

RAUC Documentation, Release v0.2

Enable Accessing Barebox State for RAUC

For this, you need to specify which (virtual) boot target belongs to which of the RAUC slots you defined. You do this
by assigning the virtual boot target name to the slots bootname property:

[slot.rootfs.0]
...
bootname=system0

[slot.rootfs.1]
...
bootname=system1

For writing the bootchooser’s state variables from userspace, RAUC uses the tool barebox-state from the dt-utils
repository.

Note: RAUC requires dt-utils version v2017.03 or later!

Make sure to have this tool integrated on your target platform. You can verify your setup by calling it manually:

barebox-state -d
bootstate.system0.remaining_attempts=3
bootstate.system0.priority=10
bootstate.system1.remaining_attempts=3
bootstate.system1.priority=20
bootstate.last_chosen=2

Verify Boot Slot Detection

As detecting the currently booted rootfs slot from userspace and matching it to one of the slots defined in RAUC’s
system.conf is not always trivial and error-prone, Barebox provides an explicit information about which slot it
selected for booting adding a bootchooser.active key to the commandline of the kernel it boots. This key has the
virtual bootchooser boot target assigned. In our case, if the bootchooser logic decided to boot system0 the kernel
commandline will contain:

bootchooser.active=system0

RAUC uses this information for detecting the active boot slot (based on the slot’s bootname property).

If the kernel commandline of your booted system contains this line, you have successfully set up bootchooser to boot
your slot:

$ cat /proc/cmdline

6.4.2 U-Boot

To enable handling of redundant booting in U-Boot, manual scripting is required. U-Boot allows storing and modifying
variables in its Envionment. Properly configured it can be accessed both from U-Boot itself as well as from Linux
userspace.

The RAUC U-Boot boot selection implementation uses a custom U-Boot script together with the environment for
managing and persisting slot selection.

To enable U-Boot support in RAUC, select it in your system.conf:

32 Chapter 6. Integration

https://git.pengutronix.de/cgit/tools/dt-utils/

RAUC Documentation, Release v0.2

[system]
...
bootloader=uboot

Set up U-Boot Environment for RAUC

The U-Boot bootloader interface of RAUC will rely on setting the U-Boot environment variables:

• BOOT_ORDER, which will contain a space-separated list of boot targets in the order they should be tried.

• BOOT_<bootname>_LEFT, which contains the number of remaining boot attempts to perform for the respec-
tive slot.

An example U-Boot script for handling redundant A/B boot setups is located in the contrib/ folder of the RAUC
source repository (contrib/uboot.sh).

You must integrate your boot selection script into U-Boot. Refer the U-Boot Scripting Capabilities chapter in the
U-Boot user documentation on how to achieve this.

The script uses the names A and B as the bootname for the two different boot targets. Thus the resulting boot
attempts variables will be BOOT_A_LEFT and BOOT_B_LEFT. The BOOT_ORDER variable will contain A B if A is
the primary slot or B A if B is the primary slot.

Note: If you want to implement different behavior or use other variable names, you might need to modify the
uboot_set_state() and uboot_set_primary() functions in src/bootchooser.c.

Enable Accessing U-Boot Environment from Userspace

To enable reading and writing of the U-Boot environment from Linux userspace, you need to have:

• U-Boot target tools fw_printenv and fw_setenv available on your devices rootfs.

• Environment configuration file /etc/fw_env.config in your target root filesystem.

See the corresponding HowTo section from the U-Boot documentation for more details on how to set up the environ-
ment config file for your device.

Support for Fail-Safe Environment Update

For atomic updates of environment, U-Boot can use redundant environment storages that allow to write one copy while
using the other as fallback if writing fails, e.g. due to sudden power cut.

In order to enable redundant environment storage, you have to set in your U-Boot config:

CONFIG_ENV_OFFSET_REDUND=y
CONFIG_ENV_ADDR_REDUND=xxx

Refer to U-Boot source code and README for more details on this.

6.4.3 GRUB

6.4. Interfacing with the Bootloader 33

https://www.denx.de/wiki/DULG/UBootScripts
https://www.denx.de/wiki/DULG/HowCanIAccessUBootEnvironmentVariablesInLinux

RAUC Documentation, Release v0.2

[system]
...
bootloader=grub

To enable handling of redundant booting in GRUB, manual scripting is required.

The GRUB bootloader interface of RAUC uses the GRUB environment variables <bootname>_OK,
<bootname>_TRY and ORDER.

To enable reading and writing of the GRUB environment, you need to have the tool grub-editenv available on
your target.

An exemplary GRUB configuration for handling redundant boot setups is located in the contrib/ folder of the
RAUC source repository (grub.conf). As the GRUB shell only has limited support for scripting, this example uses
only one try per enabled slot.

6.4.4 EFI

For x86 systems that directly boot via EFI/UEFI, RAUC supports interaction with EFI boot entries by using the
efibootmgr tool. To enable EFI bootloader support in RAUC, write in your system.conf:

[system]
...
bootloader=efi

To set up a system ready for pure EFI-based redundancy boot without any further bootloader or initramfs involved,
you have to create an appropriate partition layout and matching boot EFI entries.

Assuming a simple A/B redundancy, you would need:

• 2 redundant EFI partitions holding an EFI stub kernel (e.g. at EFI/LINUX/BZIMAGE.EFI)

• 2 redundant rootfs partitions

To create boot entries for these, use the efibootmgr tool:

efibootmgr --create --disk /dev/sdaX --part 1 --label "system0" --loader
→˓\\EFI\\LINUX\\BZIMAGE.EFI --unicode "root=PARTUUID=<partuuid-of-part-1>"
efibootmgr --create --disk /dev/sdaX --part 2 --label "system1" --loader
→˓\\EFI\\LINUX\\BZIMAGE.EFI --unicode "root=PARTUUID=<partuuid-of-part-2>"

where you replace /dev/sdaX with the name of the disk you use for redundancy boot, <partuuid-of-part-1>
with the PARTUUID of the first rootfs partition and <partuuid-of-part-2> with the PARTUUID of the second
rootfs partition.

You can inspect and verify your settings by running:

efibootmgr -v

In your system.conf, you have to list both the EFI partitions (each containing one kernel) as well as the rootfs
partitions. Make the first EFI partition a child of the first rootfs partition and the second EFI partition a child of the
second rootfs partition to have valid slot groups. Set the rootfs slot bootnames to those we have defined with the
--label argument in the efibootmgr call above:

[efi.0]
device=/dev/sdX1
type=vfat
parent=rootfs.0

34 Chapter 6. Integration

RAUC Documentation, Release v0.2

[efi.1]
device=/dev/sdX2
type=vfat
parent=rootfs.1

[rootfs.0]
device=/dev/sdX3
type=ext4
bootname=system0

[rootfs.1]
device=/dev/sdX4
type=ext4
bootname=system1

6.4.5 Others

It is planned to add support for a custom boot selection implementation that will allow you to use also non-conventional
or yet unimplemented approaches for selecting your boot slot.

6.5 Init System and Service Startup

There are several ways to run the RAUC service on your target. The recommended way is to use a systemd-based
system and allow to start RAUC via D-Bus activation.

You can start the RAUC service manually by executing:

$ rauc service

6.5.1 Systemd Integration

When building RAUC, a default systemd rauc.service file will be generated in the data/ folder.

Depending on your configuration make install will place this file in one of your system’s service file folders.

It is a good idea to wait for the system to be fully started before marking it as succesfully booted. In order to achieve
this, a smart solution is to create a systemd service that calls rauc status mark-good and use systemd’s de-
pendency handling to assure this service will not be executed before all relevant other services came up successfully.
It could look similar to this:

[Unit]
Description=RAUC Good-marking Service
ConditionKernelCommandLine=|bootchooser.active
ConditionKernelCommandLine=|rauc.slot

[Service]
ExecStart=/usr/bin/rauc status mark-good

[Install]
WantedBy=multi-user.target

6.5. Init System and Service Startup 35

RAUC Documentation, Release v0.2

6.6 D-Bus Integration

The D-Bus interface RAUC provides makes it easy to integrate it into your custom application. In order to allow
sending data, make sure the D-Bus config file de.pengutronix.rauc.conf from the data/ dir gets installed
properly.

To only start RAUC when required, using D-Bus activation is a smart solution. In order to enable D-Bus activation,
properly install the D-Bus service file de.pengutronix.rauc.service from the data/ dir.

6.7 Watchdog Configuration

Detecting system hangs during runtime requires to have a watchdog and to have the watchdog configured and handled
properly. Systemd provides a sophisticated watchdog multiplexing and handling allowing you to configure separate
timeouts and handlings for each of your services.

To enable it, you need at least to have these lines in your systemd configuration:

RuntimeWatchdogSec=20
ShutdownWatchdogSec=10min

6.8 Yocto

Yocto support for using RAUC is provided by the meta-rauc layer.

The layer supports building RAUC both for the target as well as as a host tool. With the bundle.bbclass it provides a
mechanism to specify and build bundles directly with the help of Yocto.

For more information on how to use the layer, also see the layers README file.

6.8.1 Target System Setup

Add the meta-rauc layer to your setup:

git submodule add git@github.com:rauc/meta-rauc.git

Add the RAUC tool to your image recipe (or package group):

IMAGE_INSTALL_append = "rauc"

Append the RAUC recipe from your BSP layer (referred to as meta-your-bsp in the following) by creating a
meta-your-bsp/recipes-core/rauc/rauc_%.bbappend with the following content:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI_append := "file://system.conf"

Write a system.conf for your board and place it in the folder you mentioned in the recipe (meta-your-bsp/recipes-
core/rauc/files). This file must provide a system compatible string to identify your system type, as well as a definition
of all slots in your system. By default, the system configuration will be placed in /etc/rauc/system.conf on your target
rootfs.

For a reference of allowed configuration options in system.conf, see System Configuration File. For a more detailed
instruction on how to write a system.conf, see RAUC System Configuration.

36 Chapter 6. Integration

https://github.com/rauc/meta-rauc

RAUC Documentation, Release v0.2

6.8.2 Using RAUC on the Host System

The RAUC recipe allows to compile and use RAUC on your host system. Having RAUC available as a host tool is
useful for debugging, testing or for creating bundles manually. For the preferred way of creating bundles automatically,
see the chapter Bundle Generation. In order to compile RAUC for your host system, simply run:

bitbake rauc-native

This will place a copy of the RAUC binary in tmp/deploy/tools in your current build folder. To test it, try:

tmp/deploy/tools/rauc --version

6.8.3 Bundle Generation

Bundles can be created either manually by building and using RAUC as a native tool, or by using the bundle.
bbclass that handles most of the basic steps, automatically.

First, create a bundle recipe in your BSP layer. A possible location for this could be meta-your-bsp/
recipes-core/bundles/update-bundle.bb.

To create your bundle you first have to inherit the bundle class:

inherit bundle

To create the manifest file, you may either use the built-in class mechanism, or provide a custom manifest.

For using the built-in bundle generation, you need to specify some variables:

RAUC_BUNDLE_COMPATIBLE Sets the compatible string for the bundle. This should match the compatible you
specified in your system.conf or, more generally, the compatible of the target platform you intend to install
this bundle on.

RAUC_BUNDLE_SLOTS Use this to list all slot classes for which the bundle should contain images. A value of
"rootfs appfs" for example will create a manifest with images for two slot classes; rootfs and appfs.

RAUC_SLOT_<slotclass> For each slot class, set this to the image (recipe) name which builds the artifact you
intend to place in the slot class.

RAUC_SLOT_<slotclass>[type] For each slot class, set this to the type of image you intend to place in this
slot. Possible types are: rootfs (default), kernel, bootloader.

Based on this information, your bundle recipe will build all required components and generate a bundle from this. The
created bundle can be found in tmp/deploy/images/<machine>/bundles in your build directory.

6.9 PTXdist

Note: RAUC support in PTXdist is available since version 2017.04.0.

6.9.1 Integration into Your RootFS Build

To enable building RAUC for your target, set:

6.9. PTXdist 37

RAUC Documentation, Release v0.2

CONFIG_RAUC=y

in your ptxconfig (by selection RAUC via ptxdist menuconfig).

You should also customize the compatible RAUC uses for your System. For this set CONFIG_RAUC_COMPATIBLE
to a string that uniquely identifies your device type. The default value will be "${PTXCONF_PROJECT_VENDOR}\
${PTXCONF_PROJECT}".

Place your system configuration file in configs/platform-<yourplatform>/projectroot/etc/
rauc/system.conf to let the RAUC package install it into the rootfs you build. Also place the keyring for
your device in configs/platform-<yourplatform>/projectroot/etc/rauc/ca.cert.pem.

Note: You should use your local PKI infrastructure for generating valid certificates and keys for your target. For
debugging and testing purpose, PTXdist provides a script that generates a set of example certificates. It is named
rauc-gen-test-certs.sh and located in PTXdist’s scripts folder.

If using systemd, the recipes install both the default systemd.service file for RAUC as well as a
rauc-mark-good.service file. This additional good-marking-service runs after user space is brought up and
notifies the underlying bootloader implementation about a successful boot of the system. This is typically used in
conjunction with a boot attempts counter in the bootloader that is decremented before starting the system and reset by
rauc status mark-good to indicate a successful system startup.

6.9.2 Create Update Bundles from your RootFS

To enable building RAUC bundles, set:

CONFIG_IMAGE_RAUC=y

in your platformconfig (by using ptxdist platformconfig).

This adds a default image recipe for building a RAUC update bundle out of the system’s rootfs. As for all image
recipes, the genimage tool is used to configure and generate the update bundle.

PTXdist’s default bundle configuration is placed in config/images/rauc.config. You may also copy this to your platform
directory to use this as a base for custom bundle configuration.

In order to sign your update (mandatory) you also need to place a valid certificate and key file in your BSP at the
following paths:

$(PTXDIST_PLATFORMCONFIGDIR)/config/rauc/rauc.key.pem (key)
$(PTXDIST_PLATFORMCONFIGDIR)/config/rauc/rauc.cert.pem (cert)

Once you are done with your setup, PTXdist will automatically create a RAUC update bundle for you during the run
of ptxdist images. It will be placed under <platform-builddir>/images/update.raucb.

38 Chapter 6. Integration

CHAPTER 7

Advanced Topics

7.1 Security

The RAUC bundle format consists of a squashfs image containing the images and the manifest, which is followed by
a public key signature over the full image. This signature is stored in the CMS (Cryptographic Message Syntax, see
RFC5652) format. Before installation, the signature is verified against the keyring already stored on the system.

We selected the CMS to avoid designing and implementing our own custom security mechanism (which often results
in vulnerabilities). CMS is well proven in S/MIME and has widely available implementations, while supporting simple
and as well as complex PKI use-cases (certificate expiry, intermediate CAs, revocation, algorithm selection, hardware
security modules. . .) without additional complexity in RAUC itself.

RAUC uses OpenSSL as a library for signing and verification of bundles. A PKI with intermediate CAs for the unit
tests is generated by the test/openssl-ca.sh shell script available from GitHub, which may also be useful as
an example for creating your own PKI.

In the following sections, general CA configuration, some use-cases and corresponding PKI setups are described.

7.1.1 CA Configuration

OpenSSL uses an openssl.cnf file to define paths to use for signing, default parameters for certificates and ad-
ditional parameters to be stored during signing. Configuring a CA correctly (and securely) is a complex topic and
obviously exceeds the scope of this documentation. As a starting point, the OpenSSL manual pages (espcially ca, req,
x509, cms, verify and config) and Stefan H. Holek’s pki-tutorial are useful.

7.1.2 Single Key

You can use openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days
365 -nodes to create a key and a self-signed certificate. While you can use RAUC with these, you can’t:

• replace expired certificates without updating the keyring

• distinguish between development versions and releases

39

https://tools.ietf.org/html/rfc5652
https://www.openssl.org/
https://github.com/rauc/rauc/blob/master/test/openssl-ca.sh
https://www.openssl.org/docs/manmaster/man1/ca.html
https://www.openssl.org/docs/manmaster/man1/req.html
https://www.openssl.org/docs/manmaster/man1/x509.html
https://www.openssl.org/docs/manmaster/man1/cms.html
https://www.openssl.org/docs/manmaster/man1/verify.html
https://www.openssl.org/docs/manmaster/man5/config.html
https://pki-tutorial.readthedocs.io/

RAUC Documentation, Release v0.2

• revoke a compromised key

7.1.3 Simple CA

By using the (self-signed) root CA only for signing other keys, which are used for bundle signing, you can:

• create one key per developer, with limited validity periods

• revoke keys and ship the CRL (Certificate Revocation List) with an update

With this setup, you can reduce the impact of a compromised developer key.

7.1.4 Separate Development and Release CAs

By creating a complete separate CA and bundle signing keys, you can give only specific persons (or roles) the keys
necessary to sign final releases. Each device only has one of the two CAs in its keyring, allowing only installation of
the corresponding updates.

While using signing also during development may seem unnecessary, the additional testing of the whole update system
(RAUC, bootloader, migration code, . . .) allows finding problems much earlier.

7.1.5 Intermediate Certificates

RAUC allows you to include intermediate certificates in the bundle signature that can be used to close the trust chain
during bundle signature verification.

To do this, specify the --intermediate argument during bundle creation:

rauc bundle --intermediate=/path/to/intermediate.ca.pem [...]

Note that you can specify the --intermediate argument multiple times to include multiple intermediate certifi-
cates to your bundle signature.

7.1.6 Resigning Bundles

RAUC allows to replace the signature of a bundle. A typical use case for this is if a bundle that was generated by an
autobuilder and signed with a development certificate was tested successfully on your target and should now become a
release bundle. For this it needs to be resigned with the release key without modifying the content of the bundle itself.

This is what the resign command of RAUC is for:

rauc resign --cert=<certfile> --key=<keyfile> --keyring=<keyring> <input-bundle>
→˓<output-bundle>

It verifies the bundle against the given keyring, strips the old signature and attaches a new one based on the key and
cert files provided.

Switching the Keyring – SPKI hashes

When switching from a development to a release signature, it is typically required to also equip the rootfs with a
different keyring file.

While the development system should accept both development and release certificates, the release system should
accept only release certificates.

40 Chapter 7. Advanced Topics

RAUC Documentation, Release v0.2

One option to perform this exchange without having to build a new rootfs would be to include both a keyring for the
development case as well as a keyring for the release case.

Doing this would be possible in a slot’s post-install hook, for example. Depending on whether the bundle to install
was signed with a development or a relase certificate, either the production or development keyring will be copied to
the location where RAUC expects it to be.

To allow comparing hashes, RAUC generates SPKI hashes (i.e. hashes over the entire public key information of a
certificate) out of each signature contained in the bundle’s trust chain. The SPKI hashes are invariant over changes in
signature meta data (such as the validity dates) while allowing to securely compare the certificate ownership.

A simple call of rauc info will list the SPKI hashes for each certificate contained in the validated trust chain:

Certificate Chain:
0 Subject: /O=Test Org/CN=Test Org Release-1
Issuer: /O=Test Org/CN=Test Org Provisioning CA Release
SPKI sha256:

→˓94:67:AB:31:08:04:3D:2D:62:D5:EE:58:D6:2F:86:7A:F2:77:94:29:9B:46:11:00:EC:D4:7B:1B:1D:42:8E:5A
1 Subject: /O=Test Org/CN=Test Org Provisioning CA Release
Issuer: /O=Test Org/CN=Test Org Provisioning CA Root
SPKI sha256:

→˓47:D4:9D:73:9B:11:FB:FD:AB:79:2A:07:36:B7:EF:89:3F:34:5F:D4:9B:F3:55:0F:C1:04:E7:CC:2F:32:DB:11
2 Subject: /O=Test Org/CN=Test Org Provisioning CA Root
Issuer: /O=Test Org/CN=Test Org Provisioning CA Root
SPKI sha256:

→˓00:34:F8:FE:5A:DC:3B:0D:FE:64:24:07:27:5D:14:4D:E2:39:8C:68:CC:9A:86:DD:67:03:D7:15:11:16:B4:4E

A post-install hook instead can access the SPKI hashes via the environment variable RAUC_BUNDLE_SPKI_HASHES
that will be set by RAUC when invoking the hook script. This variable will contain a space-separated list of the hashes
in the same order they are listed in rauc info. This list can be used to define a condition in the hook for either
installing one or the other keyring file on the target.

Example hook shell script code for above trust chain:

case "$1" in

[...]

slot-post-install)

[...]

iterate over trust chain SPKI hashes (from leaf to root)
for i in $RAUC_BUNDLE_SPKI_HASHES; do

Test for development intermediate certificate
if ["$i" ==

→˓"46:9E:16:E2:DC:1E:09:F8:5B:7F:71:D5:DF:D0:A4:91:7F:FE:AD:24:7B:47:E4:37:BF:76:21:3A:38:49:89:5B
→˓"]; then

echo "Activating development key chain"
mv /etc/rauc/devel-keyring.pem /etc/rauc/keyring.pem
break

fi
Test for release intermediate certificate
if ["$i" ==

→˓"47:D4:9D:73:9B:11:FB:FD:AB:79:2A:07:36:B7:EF:89:3F:34:5F:D4:9B:F3:55:0F:C1:04:E7:CC:2F:32:DB:11
→˓"]; then

echo "Activating release key chain"
mv /etc/rauc/release-keyring.pem /etc/rauc/keyring.pem
break

7.1. Security 41

RAUC Documentation, Release v0.2

fi
done
;;

[...]
esac

7.2 Data Storage and Migration

Most systems require a location for storing configuration data such as passwords, ssh keys or application data. When
performing an update, you have to ensure that the updated system takes over or can access the data of the old system.

7.2.1 Storing Data in The Root File System

In case of a writeable root file system, it often contains additional data, for example cryptographic material specific to
the machine, or configuration files modified by the user. When performing the update, you have to ensure that the files
you need to preserve are copied to the target slot after having written the system data to it.

RAUC provides support for executing hooks from different slot installation stages. For migrating data from your old
rootfs to your updated rootfs, simply specify a slot post-install hook. Read the Hooks chapter on how to create one.

7.2.2 Using Data Partions

Often, there are a couple of reasons why you don’t want to or cannot store your data inside the root file system:

• You want to keep your rootfs read-only to reduce probability of corrupting it.

• You have a non-writable rootfs such as SquashFS.

• You want to keep your data separated from the rootfs to ease setup, reset or recovery.

In this case you need a separate storage location for your data on a different partition, volume or device.

If the update concept uses full redundant root file systems, there are also good reasons for using a redundant data
storage, too. Read below about the possible impact on data migration.

To let your system access the separate storage location, it has to be mounted into your rootfs. Note that if you intend
to store configurable system information on your data partition, you have to map the default Linux paths (such as
/etc/passwd) to your data storage. You can do this by using:

• symbolic links

• bind mounts

• an overlay file system

It depends on the amount and type of data you want to handle which option you should choose.

7.2.3 Application Data Migration

Both a single and a redundant data storage have their advantages and disadvantages. Note when storing data inside
your rootfs you will have a redundant setup by design and cannot choose.

The decision about how to set up a configuration storage and how to handle it depends on several aspects:

42 Chapter 7. Advanced Topics

RAUC Documentation, Release v0.2

• May configuration formats change over different application versions?

• Can a new application read (and convert) old data?

• Does your infrastructure allow working on possibly obsolete data?

• Enough storage to store data redundantly?

• . . .

The basic advantages and disadvantages a single or a redundant setup implicate are listed below:

Single Data Redundant Data
Setup easy assure using correct one
Migration no backup by default copy on update, migrate
Fallback tricky (reconvert data?) easy (old data!)

7.3 Handling Board Variants With a Single Bundle

If you have hardware variants that require installing different images (e.g. for the kernel or for an FPGA bitstream),
but have other slots that are common (such as the rootfs) between all hardware variants, RAUC allows you to put
multiple different variants of these images in the same bundle. RAUC calls this feature ‘image variants’.

If you want to make use of image variants, you first of all need to say which variant your specific board is.
You can do this in your system.conf by setting exactly one of the keys variant-dtb, variant-file or
variant-name.

[system]
...
variant-dtb=true

The variant-dtb is a boolean that allows (on device-tree based boards) to use the systems compatible string as the
board variant.

[system]
...
variant-file=/path/to/file

A more generic alternative is the variant-file key. It allows to specify a file that will be read to obtain the variant
name. Note that the content of the file should be a simple string without any line breaks. A typical use case would
be to generate this file (in /run) during system startup from a value you obtained from your bootloader. Another use
case is to have a RAUC post-install hook that copies this file from the old system to the newly updated one.

[system]
...
variant-name=myvariant-name

A third variant to specify the systems variant is to give it directly in your system.conf. This method is primary meant
for testing, as this prevents having a generic rootfs image for all variants!

In your manifest, you can specify variants of an image (e.g. the kernel here) as follows:

[image.kernel.variant-1]
filename=variant1.img
...

7.3. Handling Board Variants With a Single Bundle 43

RAUC Documentation, Release v0.2

[image.kernel.variant-2]
filename=variant1.img
...

It is allowed to have both a specific variant as well as a default image in the same bundle. If a specific variant of the
image is available, it will be used on that system. On all other systems, the default image will be used instead.

If you have a specific image variant for one of your systems, it is mandatory to also have a default or specific variant
for the same slot class for any other system you intend to update. RAUC will report an error if for example a booloader
image is only present for variant A when you try to install on variant B. This should prevent from bricking your device
by unintentional partial updates.

7.4 Updating the Bootloader

Updating the bootloader is a special case, as it is a single point of failure on most systems: The selection of which
redundant system images should be booted cannot itself be implemented in a redundant component (otherwise there
would need to be an even earlier selection component).

Some SoCs contain a fixed firmware or ROM code which already supports redundant bootloaders, possibly integrated
with a HW watchdog or boot counter. On these platforms, it is possible to have the selection point before the boot-
loader, allowing it to be stored redundantly and updated as any other component.

If redundant bootloaders with fallback is not possible (or too inflexible) on your platform, you may instead be able to
ensure that the bootloader update is atomic. This doesn’t support recovering from a buggy bootloader, but will prevent
a non-bootable system caused by an error or power-loss during the update.

Whether atomic bootloader updates can be implemented depends on your SoC/firmware and storage medium. For
example eMMCs have two dedicated boot partitions (see the JEDEC standard JESD84-B51 for details), one of which
can be enabled atomically via configuration registers in the eMMC.

As a further example, the NXP i.MX6 supports up to four bootloader copies when booting from NAND flash. The
ROM code will try each copy in turn until it finds one which is readable without uncorrectable ECC errors and has a
correct header. By using the trait of NAND flash that interrupted writes cause ECC errors and writing the first page
(containing the header) last, the bootloader images can be replaced one after the other, while ensuring that the system
will boot even in case of a crash or power failure.

Currently, independent of whether you are able to update your bootloader with fallback, atomically or with some risk
of an unbootable system, our suggestion is to handle updates for it outside of RAUC. The main reason is to avoid
booting an old system with a new bootloader, as this combination is usually not tested during development, increasing
the risk of problems appearing only in the field.

One possible approach to this is:

• Store a copy of the bootloader in the rootfs.

• Use RAUC only to update the rootfs. The combinations to test can be reduced by limiting which old versions
are supported by an update.

• Reboot into the new system.

• On boot, before starting the application, check that the current slot is ‘sane’. Then check if the installed boot-
loader is older than the version shipped in the (new) rootfs. In that case:

– Disable the old rootfs slot and update the bootloader.

– Reboot

• Start the application.

44 Chapter 7. Advanced Topics

http://www.jedec.org/standards-documents/results/jesd84-b51

RAUC Documentation, Release v0.2

This way you still have fallback support for the rootfs upgrade and need to test only:

• The sanity check functionality and the bootloader installation when started from old bootloader and new rootfs

• Normal operation when started from new bootloader and new rootfs

The case of new bootloader with old rootfs can never happen, because you disable the old one from the new before
installing a new bootloader.

If you need to ensure that you can fall back to the secondary slot even after performing the bootloader update, you
should check that the “other” slot contains the same bootloader version as the currently running one during the sanity
check. This means that you need to update both slots in turn before the bootloader is updated.

7.5 Updating Sub-Devices

Besides the internal storage, some systems have external components or sub-devices which can be updated. For
example:

• Firmware for micro-controllers on modular boards

• Firmware for a system management controller

• FPGA bitstreams (stored in a separate flash)

• Other Linux-based systems in the same enclosure

• Software for third-party hardware components

In many cases, these components have some custom interface to query the currently installed version and to upload an
update. They may or may not have internal redundancy or recovery mechanisms as well.

Although it is possible to configure RAUC slots for these and let it call a script to perform the installation, there are
some disadvantages to this approach:

• After a fallback to an older version in an A/B scenario, the sub-devices may be running an incompatible (newer)
version.

• A modular sub-device may be replaced and still has an old firmware version installed.

• The number of sub-devices may not be fixed, so each device would need a different slot configuration.

Instead, a more robust approach is to store the sub-device firmware in the rootfs and (if needed) update them to
the current versions during boot. This ensures that the sub-devices are always running the correct set of versions
corresponding to the version of the main application.

If the bootloader falls back to the previous version on the main system, the same mechanism will downgrade the sub-
devices as needed. During a downgrade, sub-devices which are running Linux with RAUC in an A/B scenario will
detect that the image to be installed already matches the one in the other slot and avoid unnecessary installations.

7.6 Migrating to an Updated Bundle Version

As RAUC undergoes constant development, it might be extended and new features or enhancements will make their
way into RAUC. Thus, also the sections and options contained in the bundle manifest may be extended over time.

To assure a well-defined and controlled update procedure, RAUC is rather strict in parsing the manifest and will reject
bundles containing unknown configuration options.

But, this does not prevent you from being able to use those new RAUC features on your current sytem. All you have
to do is to perform an intermediate update:

7.5. Updating Sub-Devices 45

RAUC Documentation, Release v0.2

• Create a bundle containing a rootfs with the recent RAUC version, but not containing the new RAUC features
in its manifest.

• Update your system and reboot

• Now you have a system with a recent RAUC version which is able to interpretate and appropriately handle a
bundle with the latest options

7.7 Software Deployment

When designing your update infrastructure, you must think about how to deploy the updates to your device(s). In
general, you have two major options: Deployment via storage media such as USB sticks or network-based deployment.

As RAUC uses signed bundles instead of e.g. trusted connections to enable update author verification, RAUC fully
supports both methods with the same technique and you may also use both of them in parallel.

Some influential factors on the method to used can be:

• Do you have network access on the device?

• How many devices have to be updated?

• Who will perform the update?

7.7.1 Deployment via Storage Media

This method is mainly used for decentralized updates of devices without network access (either due to missing infras-
tructure or because of security concerns).

To handle deployment via storage media, you need a component that detects the plugged-in storage media and calls
RAUC to trigger the actual installation.

When using systemd, you could use automount units for detecting plugged-in media and trigger an installation.

7.7.2 Deployment via Deployment Server

Deployment over a network is especially useful when having a larger set of devices to update or direct access to these
devices is tricky.

As RAUC focuses on update handling on the target side, it does not provide a deployment server out of the box. But
if you do not already have a deployment infrastructure, there a few Open Source deployment server implementations
available in the wilderness.

One of it worth being mentioned is hawkBit from the Eclipse IoT project, which also provides some strategies for
rollout management for larger-scale device farms.

The RAUC hawkBit client

As a separate project, the RAUC development team provides a Python-based example application that acts as a hawkBit
client via its REST DDI-API while controlling RAUC via D-Bus.

For more information and testing it, visit it on GitHub:

https://github.com/rauc/rauc-hawkbit

It is also available via pypi:

46 Chapter 7. Advanced Topics

https://www.freedesktop.org/software/systemd/man/systemd.automount.html
https://eclipse.org/hawkbit/
https://github.com/rauc/rauc-hawkbit

RAUC Documentation, Release v0.2

https://pypi.python.org/pypi/rauc-hawkbit/

7.7. Software Deployment 47

https://pypi.python.org/pypi/rauc-hawkbit/

RAUC Documentation, Release v0.2

48 Chapter 7. Advanced Topics

CHAPTER 8

Design Checklist

This checklist is intended to help you verify that your design and implementation cover the important corner-cases and
details. Even if not all items are ticked off for your system, it’s useful to have at least thought about them. Most of
these are general considerations and not strictly RAUC specific.

8.1 General

• System compatible is specific enough

• Bundle version policy defined

• Bundle contains all software components

• Bundles are created automatically by a build system

• Bundle deployment mechanism defined (pull or push via the network, from USB/SD, . . .)

8.2 Slot Layout

• Slot layout provides the desired redundancy

• Complexity vs. simplicity trade-offs understood

• Single points of failure identified and well tested

• Factory disk image includes all slots with default contents

• Appropriate image formats selected (tar or filesystem-image)

• Bootloader uses the same names configured in system.conf as bootname

• Bootloader update mechanism defined (or declared as fixed)

49

RAUC Documentation, Release v0.2

8.3 Recovery Mechanism

• The initial (factory) boot configuration is correct

• Boot failures are detected by the bootloader

• Booting the same slot is retried the correct number of times (once or more)

• The behavior if one slot fails to boot is defined (fallback to old version or not)

• The behavior if all slots fail to boot is defined (retry or poweroff)

8.3.1 If Using a HW Watchdog for Error Detection

• Watchdog is never disabled before application is ready

• Bootloader distinguishes watchdog resets from normal boot

• Bootloader ensures the watchdog is enabled before starting the kernel

• The watchdog reset reinitializes the whole system (power supplies, storage, SoC, . . .)

• All essential services are monitored by the watchdog

8.3.2 If Not Using a HW Watchdog for Error Detection

• Bootloader detects failed boots via a counter

• Boot counter is reset on a successful boot

• All essential services work before confirming the current boot as successful

8.4 Security

• PKI configured

• Certificate validity periods defined

– Systems always have correct time or

– Validity period is large enough

• Key revocation tested

• Key rollover tested

• Separate development and release keys deployed

• Per-user or per-role keys deployed

8.5 Data Migration

• Passwords/SSH keys are preserved during updates

• Shared data is handled correctly during up- and downgrades

50 Chapter 8. Design Checklist

CHAPTER 9

Frequently Asked Questions

9.1 Why doesn’t the installed system use the whole partition?

The filesystem image installed via RAUC was probably created for a size smaller than the partition on the target device.

Especially in cases where the same bundle will be installed on devices which use different partition sizes, tar archives
are preferable to filesystem images. When RAUC installs from a tar archive, it will first create a new filesystem on the
target partition, allowing use of the full size.

51

RAUC Documentation, Release v0.2

52 Chapter 9. Frequently Asked Questions

CHAPTER 10

Reference

• System Configuration File

• Manifest

• Slot Status File

• Command Line Tool

• Custom Handlers (Interface)

• D-Bus API

• RAUC’s Basic Update Procedure

10.1 System Configuration File

A configuration file located in /etc/rauc/system.conf describes the number and type of available slots. It is
used to validate storage locations for update images. Each board type requires its special configuration.

This file is part of the root file system.

Example configuration:

[system]
compatible=FooCorp Super BarBazzer
bootloader=barebox

[keyring]
path=/etc/rauc/keyring.pem

[handlers]
system-info=/usr/lib/rauc/info-provider.sh
post-install=/usr/lib/rauc/postinst.sh

53

RAUC Documentation, Release v0.2

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system0

[slot.rootfs.1]
device=/dev/sda1
type=ext4
bootname=system1

[system] section

compatible A user-defined compatible string that describes the target hardware as specific enough as required to
prevent faulty updating systems with the wrong firmware. It will be matched against the compatible string
defined in the update manifest.

bootloader The bootloader implementation RAUC should use for its slot switching mechanism. Currently sup-
ported values (and bootloaders) are barebox, grub, u-boot.

mountprefix Prefix of the path where bundles and slots will be mounted. Can be overwritten by the command line
option --mount. Defaults to /mnt/rauc/.

grubenv Only valid when bootloader is set to grub. Specifies the path under which the GRUB environment
can be accessed.

activate-installed This boolean value controls if a freshly installed slot is automatically marked active with
respect to the used bootloader. Its default value is true which means that this slot is going to be started the next
time the system boots. If the value of this parameter is false the slot has to be activated manually in order to
be booted, see section Manually Switch to a Different Slot.

[keyring] section

The keyring section refers to the trusted keyring used for signature verification.

path Path to the keyring file in PEM format. Either absolute or relative to the system.conf file.

[autoinstall] section

The auto-install feature allows to configure a path that will be checked upon RAUC service startup. If there is a bundle
placed under this specific path, this bundle will be installed automatically without any further interaction.

This feature is useful for automatically updating the slot RAUC currently runs from, like for asymmetric redundancy
setups where the update is always performed from a dedicated (recovery) slot.

path The full path of the bundle file to check for. If file at path exists, auto-install will be triggered.

[handlers] section

Handlers allow to customize RAUC by placing scripts in the system that RAUC can call for different purposes. All
parameters expect pathnames to the script to be executed. Pathnames are either absolute or relative to the system.conf
file location.

RAUC passes a set of environment variables to handler scripts. See details about using handlers in Custom Handlers
(Interface).

system-info This handler will be called when RAUC starts up, right after loading the system configuration file.
It is used for obtaining further information about the individual system RAUC runs on. The handler script must
print the information to standard output in form of key value pairs KEY=value. The following variables are
supported:

RAUC_SYSTEM_SERIAL Serial number of the individual board

54 Chapter 10. Reference

RAUC Documentation, Release v0.2

pre-install This handler will be called right before RAUC starts with the installation. This is after RAUC has
verified and mounted the bundle, thus you can access bundle content.

post-install This handler will be called after a successful installation. The bundle is still mounted at this mo-
ment, thus you could access data in it if required.

Note: When using a full custom installation (see [handler] section) RAUC will not execute any system handler script.

[slot.<slot-class>.<idx>] section

Each slot is identified by a section starting with slot. followed by the slot class name, and a slot number. The
<slot-class> name is used in the update manifest to target the correct set of slots. It must not contain any . (dots) as
these are used as hierarchical separator.

device The slot’s device path.

type The type describing the slot. Currently supported values are raw, nand, ubivol, ubifs, ext4, vfat. See
table Slot Type for a more detailed list of these different types.

bootname For bootable slots, the name the bootloader uses to identify it. The real meaning of this depends on the
bootloader implementation used.

parent The parent entry is used to bind additional slots to a bootable root file system slot. This is used together
with the bootname to identify the set of currently active slots, so that the inactive one can be selected as the
update target. The parent slot is referenced using the form <slot-class>.<idx>.

readonly Marks the slot as existing but not updatable. May be used for sanity checking or informative purpose. A
readonly slot cannot be a target slot.

ignore-checksum If set to true this will bypass the default hash comparison for this slot and force RAUC to
unconditionally update it. The default value is false, which means that updating this slot will be skipped if
new image’s hash matches hash of installed one.

10.2 Manifest

A valid manifest file must have the file extension .raucm.

[update]
compatible=FooCorp Super BarBazzer
version=2016.08-1

[image.rootfs]
filename=rootfs.ext4
size=419430400
sha256=b14c1457dc10469418b4154fef29a90e1ffb4dddd308bf0f2456d436963ef5b3

[image.appfs]
filename=appfs.ext4
size=219430400
sha256=ecf4c031d01cb9bfa9aa5ecfce93efcf9149544bdbf91178d2c2d9d1d24076ca

[update] section

compatible A user-defined compatible string that must match the compatible string of the system the bundle
should be installed on.

version A free version field that can be used to provide and track version information. No checks will be performed
on this version by RAUC itself, although a handler can use this information to reject updates.

10.2. Manifest 55

RAUC Documentation, Release v0.2

description A free-form description field that can be used to provide human-readable bundle information.

build A build id that would typically hold the build date or some build information provided by the bundle creation
environment. This can help to determine the date and origin of the built bundle.

[hooks] section

filename Hook script path name, relative to the bundle content.

hooks List of hooks enabled for this bundle.

[handler] section

filename Handler script path name, relative to the bundle content. Used to fully replace default update process.

args Arguments to pass to the handler script, such as args=--verbose

[image.<slot-class>] section

filename Name of the image file (relative to bundle content).

sha256 sha256 of image file. RAUC determines this value automatically when creating a bundle, thus it is not
required to set this by hand.

size size of image file. RAUC determines this value automatically when creating a bundle, thus it is not required to
set this by hand.

hooks List of per-slot hooks enabled for this image.

10.3 Slot Status File

A slot status file is generated by RAUC after having updated a slot. If the slot is writeable for RAUC (because it
contains a writable filesystem), it will place a small file named slot.raucs in its root directory, containing the
sha256 of the installed image.

[slot]
status=ok
sha256=b14c1457dc10469418b4154fef29a90e1ffb4dddd308bf0f2456d436963ef5b3

10.4 Command Line Tool

Usage:
rauc [OPTION...] <COMMAND>

Options:
-c, --conf=FILENAME config file
--cert=PEMFILE cert file
--key=PEMFILE key file
--keyring=PEMFILE keyring file
--intermediate=PEMFILE intermediate CA file name
--mount=PATH mount prefix
--override-boot-slot=SLOTNAME override auto-detection of booted slot
--handler-args=ARGS extra handler arguments
-d, --debug enable debug output
--version display version
-h, --help

56 Chapter 10. Reference

RAUC Documentation, Release v0.2

List of rauc commands:
bundle Create a bundle
resign Resign an already signed bundle
checksum Update a manifest with checksums (and optionally sign it)
install Install a bundle
info Show file information
status Show status

10.5 Custom Handlers (Interface)

Interaction between RAUC and custom handler shell scripts is done using shell variables.

RAUC_SYSTEM_CONFIG Path to the system configuration file (default path is /etc/rauc/system.conf)

RAUC_CURRENT_BOOTNAME Bootname of the slot the system is currently booted from

RAUC_UPDATE_SOURCE Path to mounted update bundle, e.g. /mnt/rauc/bundle

RAUC_MOUNT_PREFIX Provides the path prefix that may be used for RAUC mount points

RAUC_SLOTS An iterator list to loop over all existing slots. Each item in the list is an integer referencing one of the
slots. To get the slot parameters, you have to resolve the per-slot variables (suffixed with <N> placeholder for
the respective slot number).

RAUC_TARGET_SLOTS An iterator list similar to RAUC_SLOTS but only containing slots that were selected as
target slots by the RAUC target slot selection algorithm. You may use this list for safely installing images into
these slots.

RAUC_SLOT_NAME_<N> The name of slot number <N>, e.g. rootfs.0

RAUC_SLOT_CLASS_<N> The class of slot number <N>, e.g. rootfs

RAUC_SLOT_DEVICE_<N> The device path of slot number <N>, e.g. /dev/sda1

RAUC_SLOT_BOOTNAME_<N> The bootloader name of slot number <N>, e.g. system0

RAUC_SLOT_PARENT_<N> The name of slot number <N>, empty if none, otherwise name of parent slot

for i in $RAUC_TARGET_SLOTS; do
eval RAUC_SLOT_DEVICE=\$RAUC_SLOT_DEVICE_${i}
eval RAUC_IMAGE_NAME=\$RAUC_IMAGE_NAME_${i}
eval RAUC_IMAGE_DIGEST=\$RAUC_IMAGE_DIGEST_${i}

done

10.6 D-Bus API

RAUC provides a D-Bus API that allows other applications to easily communicate with RAUC for installing new
firmware.

de.pengutronix.rauc.Installer

10.6.1 Methods

Install (IN s source);

10.5. Custom Handlers (Interface) 57

RAUC Documentation, Release v0.2

10.6.2 Signals

Completed (i result);

10.6.3 Properties

Operation readable s

LastError readable s

Progress readable (isi)

10.6.4 Description

10.6.5 Method Details

The Install() Method

de.pengutronix.rauc.Installer.Install()
Install (IN s source);

Triggers the installation of a bundle.

IN s source: Path to bundle to be installed

10.6.6 Signal Details

The “Completed” Signal

de.pengutronix.rauc.Installer::Completed
Completed (i result);

This signal is emitted when an installation completed, either successfully or with an error.

i result: return code (0 for success)

10.6.7 Property Details

The “Operation” Property

de.pengutronix.rauc.Installer:Operation
Operation readable s

Represents the current (global) operation RAUC performs.

The “LastError” Property

de.pengutronix.rauc.Installer:LastError
LastError readable s

Holds the last message of the last error that occured.

58 Chapter 10. Reference

RAUC Documentation, Release v0.2

The “Progress” Property

de.pengutronix.rauc.Installer:Progress
Progress readable (isi)

Provides installation progress informations in the form

(percentage, message, nesting depth)

10.7 RAUC’s Basic Update Procedure

Performing an update using the default RAUC mechanism will work as follows:

1. Startup, read system configuration

2. Determine slot states

3. Verify bundle signature (reject if invalid)

4. Mount bundle (SquashFS)

5. Parse and verify manifest

6. Determine target install group

(a) Execute pre install handler (optional)

7. Verify bundle compatible against system compatible (reject if not matching)

8. Mark target slots as non-bootable for bootloader

9. Iterate over each image specified in the manifest

(a) Determine update handler (based on image and slot type)

(b) Try to mount slot and read slot status information

i. Skip update if new image hash matches hash of installed one

(c) Perform slot update (image copy / mkfs+tar extract / . . .)

(d) Try to write slot status information

10. Mark target slots as new primary boot source for the bootloader

(a) Execute post install handler (optional)

11. Unmount bundle

12. Terminate successfully if no error occurred

10.7. RAUC’s Basic Update Procedure 59

RAUC Documentation, Release v0.2

60 Chapter 10. Reference

CHAPTER 11

Terminology

Update Controller This controls the update process and can be started on demand or run as a daemon.

Update Handler The handler performs the actual update installation. A default implementation is provided with the
update controller and can be overridden in the update manifest.

Update Bundle The bundle is a single file containing an update. It consists of a squashfs with an appended crypto-
graphic signature. It contains the update manifest, one or more images and optionally an update handler.

Update Manifest This contains information about update compatibility, image hashes and references the optional
handler. It is either contained in a bundle or downloaded individually over the network.

Slot Slots are possible targets for (parts of) updates. Usually they are partitions on a SD/eMMC, UBI volumes on
NAND/NOR flash or raw block devices. For filesystem slots, the controller stores status information in a file in
that filesystem.

Slot Class All slots with the same purpose (such as rootfs, appfs) belong to the same slot class. Only one slot per
class can be active at runtime.

Install Group If a system consists of more than only the root file system, additional slots are bound to one of the root
file system slots. They form an install group. An update can be applied only to members of the same group.

System Configuration This configures the controller and contains compatibility information and slot definitions.
For now, this file is shipped as part of the root filesystem.

Boot Chooser The bootloader component that determines which slot to boot from.

Recovery System A non-updatable initial (fatory default) system, capable of running the update service to recover
the system if all other slots are damaged.

61

RAUC Documentation, Release v0.2

62 Chapter 11. Terminology

CHAPTER 12

Contributing

Thank you for thinking about contributing to RAUC! Some different backgrounds and use-cases are essential for
making RAUC work well for all users.

The following should help you with submitting your changes, but don’t let these guidelines keep you from opening a
pull request. If in doubt, we’d prefer to see the code earlier as a work-in-progress PR and help you with the submission
process.

12.1 Workflow

• Changes should be submitted via a GitHub pull request.

• Try to limit each commit to a single conceptual change.

• Add a signed-of-by line to your commits according to the Developer’s Certificate of Origin (see below).

• Check that the tests still work before submitting the pull request. Also check the CI’s feedback on the pull
request after submission.

• When adding new features, please also add the corresponding documentation and test code.

• If your change affects backward compatibility, describe the necessary changes in the commit message and update
the examples where needed.

12.2 Code

• Basically follow the Linux kernel coding style

12.3 Documentation

• Use semantic linefeeds in .rst files.

63

https://github.com/rauc/rauc/pulls
http://rhodesmill.org/brandon/2012/one-sentence-per-line/

RAUC Documentation, Release v0.2

12.4 Developer’s Certificate of Origin

RAUC uses the Developer’s Certificate of Origin 1.1 with the same process as used for the Linux kernel:

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

1. The contribution was created in whole or in part by me and I have the right to submit it under the
open source license indicated in the file; or

2. The contribution is based upon previous work that, to the best of my knowledge, is covered under
an appropriate open source license and I have the right under that license to submit that work with
modifications, whether created in whole or in part by me, under the same open source license (unless
I am permitted to submit under a different license), as indicated in the file; or

3. The contribution was provided directly to me by some other person who certified (a), (b) or (c) and
I have not modified it.

4. I understand and agree that this project and the contribution are public and that a record of the
contribution (including all personal information I submit with it, including my sign-off) is main-
tained indefinitely and may be redistributed consistent with this project or the open source license(s)
involved.

Then you just add a line (using git commit -s) saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

64 Chapter 12. Contributing

https://developercertificate.org/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
mailto:random@developer.example.org

CHAPTER 13

Changes in RAUC

13.1 Release 0.3 (released Feb 1, 2018)

Enhancements

• Added support for intermediate certificates, improved bundle resigning and certificate information for hooks.
This makes it easier to use a multi-level PKI with separate intermediate certificates for development and releases.
See Resigning Bundles for details.

• Added support for image variants, which allow creating a single bundle which supports multiple hardware
variants by selecting the matching image from a set contained in the bundle. See Handling Board Variants With
a Single Bundle for details.

• Added support for redundant booting by using EFI boot entries directly. See EFI for details.

• Added boot information to rauc status

• Added rauc extract command to extract bundles

• Support detection of the booted slot by using the UUID= and PARTUUID= kernel options.

• Improved the status and error output

• Improved internal error cause propagation

Bug fixes

• Fixed boot slot detection for root=<symlink> boot parameters (such as root=/dev/disk/by-path/
pci-0000:00:17.0-ata-1-part1)

• Removed redundant image checksum verification during installation.

65

RAUC Documentation, Release v0.2

Testing

• Improve robustness and test coverage

• Use gcc-7 for testing

Documentation

• Added documentation for

– intermediate certificates

– re-signing bundles

– image variants

– UEFI support

• Minor fixes and clarifications

13.2 Release 0.2 (released Nov 7, 2017)

Enhancements

• Added --override-boot-slot argument to force booted slot

• Display installation progress and error cause in CLI

• Allow installing uncompressed tar balls

• Error reporting for network handling and fail on HTTP errors

• Added --keyring command line argument

• Added activate-installed key and handling for system.conf that allows installing updates without
immediately switching boot partitions.

• Extended rauc status mark-{good,bad} with an optional slot identifier argument

• Added subcommand rauc status mark-active to explicitly activate slots

• New D-Bus method mark introduced that allows slot activation via D-Bus

• Added tar archive update handler for vfat slots

• Introduced rauc resign command that allows to exchange RAUC signature without modifying bundle con-
tent

• Display signature verification trust chain in output of rauc info. Also generate and display SPKI hash for
each certificate

• Added --dump-cert argument to rauc info to allow displaying signer certificate info

Documentation

• Added docs/, CHANGES and README to tarball

• Added and reworked a bunch of documentation chapters

66 Chapter 13. Changes in RAUC

RAUC Documentation, Release v0.2

• Help text for rauc bundle fixed

• Added short summary for command help

Bug fixes

• Flush D-Bus interface to not drop property updates

• Set proper PATH when starting service on non-systemd systems

• Include config.h on top of each file to fix largefile support and more

• Let CLI properly fail on excess arguments provided

• Do not disable bundle checking for rauc info --no-verify

• Properly clean up mount points after failures

• Abort on inconsistent slot parent configuration

• Misc memory leak fixes

• Fixes in error handling and debug printout

• Some code cleanups

Testing

• Miscellaneous cleanups, fixes and refactoring

• Add tests for installation via D-Bus

• Let Travis build documentation with treating warnings as errors

• Allow skipping sharness tests requiring service enabled

• Explicitly install dbus-x11 package to fix Travis builds

• Fix coveralls builds by using --upgrade during pip install cpp-coveralls

• Use gcc-6 for testing

13.3 Release 0.1.1 (released May 11, 2017)

Enhancements

• systemd service: allow systemd to manage and cleanup RAUCs mount directory

Documentation

• Added contribution guideline

• Added CHANGES file

• Converted README.md to README.rst

• Added RAUC logo

• Several typos fixed

13.3. Release 0.1.1 (released May 11, 2017) 67

RAUC Documentation, Release v0.2

• Updated documentation for mainline PTXdist recipes

Bug fixes

• Fix signature verification with OpenSSL 1.1.x by adding missing binary flag

• Fix typo in json status output formatter (“mountpint” -> “mountpoint”)

• Fixed packaging of systemd service files by removing generated service files from distribution

• src/context: initialize datainstream to NULL

• Added missing git-version-gen script to automake distribution which made autoreconf runs on release packages
fail

• Fixed D-Bus activation of RAUC service for non-systemd systems

13.4 Release 0.1 (released Feb 24, 2017)

This is the initial release of RAUC.

• search

• genindex

68 Chapter 13. Changes in RAUC

CHAPTER 14

The Need for Updating

Updating an embedded system is always a critical step during the life cycle of an embedded hardware product. Updates
are important to either fix system bugs, solve security problems or simply for adding new features to a platform.

As embedded hardware often is placed in locations that make it difficult or costly to gain access to the board itself,
an update must be performed unattended; for example either by connecting a special USB stick or via some network
roll-out strategy.

Updating an embedded system is risky; an update might be incompatible, a procedure crashes, the underlying storage
fails with a write error, or someone accidentally switches the power off, etc. All this may occur but should not lead to
having an unbootable hardware at the end.

Another point besides safe upgrades are security considerations. You would like to prevent that someone unauthorized
is able to load modified firmware onto the system.

69

RAUC Documentation, Release v0.2

70 Chapter 14. The Need for Updating

CHAPTER 15

What is RAUC?

RAUC is a lightweight update client that runs on your embedded device and reliably controls the procedure of updating
your device with a new firmware revision. RAUC is also the tool on your host system that lets you create, inspect and
modify update artifacts for your device.

The decision to design was made after having worked on custom update solutions for different projects again and again
while always facing different issues and unexpected quirks and pitfalls that were not taken into consideration before.

Thus, the aim of RAUC is to provide a well-tested, solid and generic base for the different custom requirements and
restrictions an update concept for a specific platform must deal with.

When designing the RAUC update tool, all of these requirements were taken into consideration. In the following,
we provide a short overview of basic concepts, principles and solutions RAUC provides for updating an embedded
system.

71

RAUC Documentation, Release v0.2

72 Chapter 15. What is RAUC?

CHAPTER 16

And What Not?

RAUC is NOT a full-blown updating application or GUI. It provides a CLI for testing but is mainly designed to allow
seamless integration into your individual Applications and Infrastructure by providing a D-Bus interface.

RAUC can NOT replace your bootloader who is responsible for selecting the appropriate target to boot, but it provides
a well-defined interface to incorporate with all common bootloaders.

RAUC does NOT intend to be a deployment server. On your host side, it only creates the update artifacts. You may
want to have a look at rauc-hawkbit for interfacing with the hawkBit deployment server.

And finally, factory bring up of your device, i.e. initial partitioning etc. is also out of scope for and update tool like
RAUC. While you may use it for initially filling your slot contents during factory bring up, the partitioning or volume
creation must be made manually or by a separate factory bring up script.

73

https://github.com/rauc/rauc-hawkbit

RAUC Documentation, Release v0.2

74 Chapter 16. And What Not?

CHAPTER 17

Key Features of RAUC

• Fail-Safe & Atomic:

– An update may be interrupted at any point without breaking the running system.

– Update compatibility check

– Mark boots as successful / failed

• Cryptographic signing and verification of updates using OpenSSL (signatures based on x.509 certificates)

• Flexible and customizable redundancy/storage setup

– Symmetric setup (Root-FS A & B)

– Asymmetric setup (recovery & normal)

– Application partition, data partitions, . . .

– Allows grouping of multiple slots (rootfs, appfs) as update targets

• Bootloader interface supports common bootloaders

– grub

75

https://www.gnu.org/software/grub/

RAUC Documentation, Release v0.2

– barebox

* Well integrated with bootchooser framework

– u-boot

– EFI

• Storage support:

– ext2/3/4 filesystem

– vfat filesystem

– UBI volumes

– UBIFS

– raw NAND (using nandwrite)

– squashfs

• Independent from update sources

– USB Stick

– Software provisioning server (e.g. Hawkbit)

• Controllable via D-Bus interface

• Supports data migration

• Several layers of update customization

– Update-specific extensions (hooks)

– System-specific extensions (handlers)

– Fully custom update script

• Build-system support

Yocto support in meta-rauc PTXdist support since 2017.04.0.

76 Chapter 17. Key Features of RAUC

http://barebox.org/
http://barebox.de/doc/latest/user/bootchooser.html?highlight=bootchooser
http://www.denx.de/wiki/U-Boot
https://de.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://github.com/rauc/meta-rauc

Index

B
Boot Chooser, 61

I
Install Group, 61

R
RAUC_CURRENT_BOOTNAME, 57
RAUC_IMAGE_CLASS, 14
RAUC_IMAGE_DIGEST, 14
RAUC_IMAGE_NAME, 14
RAUC_MF_COMPATIBLE, 13
RAUC_MF_VERSION, 13
RAUC_MOUNT_PREFIX, 13, 14, 57
RAUC_SLOT_BOOTNAME, 14
RAUC_SLOT_BOOTNAME_<N>, 57
RAUC_SLOT_CLASS, 14
RAUC_SLOT_CLASS_<N>, 57
RAUC_SLOT_DEVICE, 14
RAUC_SLOT_DEVICE_<N>, 57
RAUC_SLOT_MOUNT_POINT, 14
RAUC_SLOT_NAME, 14
RAUC_SLOT_NAME_<N>, 57
RAUC_SLOT_PARENT, 14
RAUC_SLOT_PARENT_<N>, 57
RAUC_SLOTS, 57
RAUC_SYSTEM_COMPATIBLE, 13
RAUC_SYSTEM_CONFIG, 57
RAUC_TARGET_SLOTS, 57
RAUC_UPDATE_SOURCE, 57
Recovery System, 61

S
Slot, 61
Slot Class, 61
System Configuration, 61

U
Update Bundle, 61

Update Controller, 61
Update Handler, 61
Update Manifest, 61

77

	Updating your Embedded Device
	RAUC Basics
	Using RAUC
	Examples
	Scenarios
	Integration
	Advanced Topics
	Design Checklist
	Frequently Asked Questions
	Reference
	Terminology
	Contributing
	Changes in RAUC
	The Need for Updating
	What is RAUC?
	And What Not?
	Key Features of RAUC

