
RAUC Documentation
Release 1.10.1

Jan Luebbe, Enrico Joerns, the RAUC contributors

Aug 03, 2023

Contents

1 Updating your Embedded Device 3

2 RAUC Basics 5

3 Using RAUC 11

4 Examples 23

5 Scenarios 31

6 Integration 35

7 Advanced Topics 59

8 Design Checklist 83

9 Frequently Asked Questions 87

10 Reference 91

11 Terminology 115

12 Contributing 117

13 Changes in RAUC 121

14 The Need for Updating 145

15 What is RAUC? 147

16 And What Not? 149

17 Key Features of RAUC 151

Index 155

i

ii

RAUC Documentation, Release 1.10.1

Contents:

Contents 1

RAUC Documentation, Release 1.10.1

2 Contents

CHAPTER 1

Updating your Embedded Device

This chapter does not explicitly tell you anything about RAUC itself, but it provides an initial overview of basic
requirements and design consideration that have to be taken into account when designing an update architecture for
your embedded device.

Thus, if you know about updating and are interested in RAUC itself, only, simply skip this chapter.

Nevertheless, this chapter could also provide some useful hints that can already be useful when designing the device
you intend to update later on. In this you initial phase you can prevent yourself from making wrong decisions.

1.1 Redundancy and Atomicity

There are two key requirements for allowing you to robustly update your system.

The first one is redundancy: You must not update the system you are currently running on. Otherwise a failure during
updating will brick the only system you can run your update from.

The second one is atomicity: Writing your update to the currently inactive device is a critical operation. A failure
occurring during this installation must not brick your device. Thus you must make sure to tell your boot logic to select
the updated device not before being very sure that the update successfully completed. Additionally, the operation that
switches the boot device must be atomic itself.

1.2 Storage Type and Size

The type and amount of available storage on your device has a huge impact on the design of your updatable embedded
system.

Except when optimizing for the smallest storage requirements possible, your system should have two redundant de-
vices or partitions for your root file-system. This full symmetric setup allows you to run your application while safely
updating the inactive copy. Additionally, if the running system become corrupted for any reason, you may fall back to
you second rootfs device.

3

RAUC Documentation, Release 1.10.1

If the available storage is not much larger than the space required by your devices rootfs, a full redundant symmetric
A/B setup will not be an option. In this case, you might need to use a rescue system consisting of a minimal kernel
with an appended initramfs to install your updates.

Note: If you can choose the storage technology for your system, DO NOT choose raw NAND flash. NAND (espe-
cially MLC) is complex to handle correctly and comes with a variety of very specific effects that may cause difficult to
debug problem later (if not all details of the storage stack are configured just right). Instead choose eMMC or SSDs,
where the engineers who (hopefully) know the quirks of their technology have created layers that hide this complexity
to you.

If storage size can be freely chosen, calculate for at least 2x the size of your rootfs plus additionally required space,
e.g. for bootloader, (redundant) data storage, etc.

1.3 Security

An update tool or the infrastructure around it should ensure that no unauthorized entity is able to update your device.
This can be done by having:

a) a secure channel to transfer the update or

b) a signed update that allows you to verify its author.

Note that the latter method is more flexible and might be the only option if you intend to use a USB stick for example.

1.4 Interfacing with your Bootloader

The bootloader is the final instance that controls which partition on your rootfs device will be booted. In order to
switch partitions after an update, you have to have an interface to the bootloader that allows you to set the boot order,
boot priority and other possible parameters.

Some bootloaders, such as U-Boot, allow access to their environment storage where you can freely create and modify
variables the bootloader may read. Boot logic often can be implemented by a simple boot script.

Some others have distinct redundancy boot interfaces with redundant state storage. These often provide more fea-
tures than simply switching boot partitions and are less prone to errors when used. The Barebox bootloader with its
bootchooser framework is a good example for this.

1.5 Update Source and Provisioning

Depending on your infrastructure or requirements, an update might be deployed in several ways.

The two most common ones are over network, e.g. by using a deployment server, or simply over a USB stick that will
be plugged into the target system.

4 Chapter 1. Updating your Embedded Device

CHAPTER 2

RAUC Basics

From a top view, the RAUC update framework provides a solution for four basic tasks:

• generating update artifacts

• signing and verification of update artifacts

• robust installation handling

• interfacing with the boot process

RAUC is basically an image-based updater, i.e. it installs file images on devices or partitions. But, for target devices
that can have a file system, it also supports installing contents from tar archives. This often provides much more
flexibility as a tar archive does not have to fit a specific partition size or type. RAUC ensures that the target file system
will be set up correctly before unpacking the archive.

2.1 Update Artifacts – Bundles

In order to know how to pack multiple file system images, properly handle installation, being able to check system
compatibility and for other meta-information RAUC uses a well-defined update artifact format, simply referred to as
bundles in the following.

A RAUC bundle consists of the file system image(s) or archive(s) to be installed on the system, a manifest that
lists the images to install and contains options and meta-information, and possible scripts to run before, during or
after installation. A bundle may also contain files not referenced in the manifest, such as scripts or archives that are
referenced by files that are included in the manifest.

To pack this all together, these contents are collected into a SquashFS image. This provides good compression while
allowing to mount the bundle without having to unpack it on the target system. This way, no additional intermediate
storage is required. For more details see the Bundle Formats section.

A key design decision of RAUC is that signing a bundle is mandatory. For development purpose a self-signed certifi-
cate might be sufficient, for production the signing process should be integrated with your PKI infrastructure.

5

RAUC Documentation, Release 1.10.1

Important: A RAUC Bundle should always unambiguously describe the intended target state of the entire system.

2.1.1 HTTP Streaming

Since RAUC 1.7, bundles can be installed directly from a HTTP(S) server, without having to download and store the
bundle locally. Simply use the bundle URL as the rauc install argument instead of a local file.

Using streaming has a few requirements:

• make sure RAUC is built with -Dstreaming=true/--enable-streaming (which is the default)

• create bundles using the verity format

• host the bundle on a server which supports HTTP Range Requests

• enable NBD support in the target kernel

See the HTTP Streaming section in the Advanced chapter for more details.

2.2 Forward and Backward Compatibility

Our overall goal with regards to compatibility is a good balance between the requirements of users and the constraints
during development. For users, it is mainly relevant how a given version of RAUC on the target handles bundles
produced by older (backward compatibility) and newer versions (forward compatibility) of RAUC. As developers, we
want to keep the effort for supporting old versions in the field at a reasonable level and have the flexibility to improve
RAUC with new versions.

To ensure forward compatibility, new bundle features need to be enabled explicitly during bundle creation. So without
changing the manifest, newer RAUC versions used for bundle creation will not require new versions on the target. This
includes new bundle formats, new hooks, adaptive updates or additional metadata. When a new (incompatible) feature
is enabled in a bundle, older RAUC versions will report an error during installation to ensure that the installation result
is deterministic. As long as you don’t enable new features during creation, our intention is that bundles created by
newer versions will be installable by older versions and any such issues would be considered a bug.

To ensure backward compatibility, support for older bundle features is enabled by default and can be disabled explicitly
in the RAUC system.conf as needed. To keep RAUC maintainable, we may need to deprecate and later remove
support for old features over time. This would be done with several years between deprecation and removal so that
at least one Yocto LTS version contains a RAUC version that warns when using the deprecated feature, giving users
enough time to migrate away from that feature. Any issues with installing bundles created by an old RAUC version
using a new RAUC version would be considered a bug, except when using a feature removed after the deprecation
period. Also, please contact us if a deprecation period is too short for your use case.

Furthermore, we avoid depending on new kernel features or library versions, so that it is possible to switch to newer
RAUC versions without having to switch to a new distribution release at the same time. The guideline is that we can
depend on new features only when they are available in all versions still actively supported by the respective upstream
projects.

As a result, users that update at least every two years (for example by following Yocto LTS releases) should receive
deprecation warnings early enough to handling them via normal updates.

6 Chapter 2. RAUC Basics

RAUC Documentation, Release 1.10.1

2.3 RAUC’s System View

Apart from bundle signing and verification, the main task of RAUC is to ensure that all images in your update bundle
are copied in the proper way to the proper target device / partition on your board.

In order to allow RAUC to handle your device correctly, we need to give it the right view on your system.

2.3.1 Slots

In RAUC, everything that can be updated is a slot. Thus a slot can either be a full device, a partition, a volume or
simply a file.

To let RAUC know which slots exists on the board that should be handled, the slots must be configured in a system
configuration file. This file is the central instance that tells RAUC how to handle the board, which bootloader to use,
which custom scripts to execute, etc.

This includes the slot description names, for example, the file path that the slot can be accessed with, the type of
storage or filesystem to use, its identification from the bootloader, etc.

2.3.2 Target Slot Selection

A very important step when installing an update is to determine the correct mapping from the images that are contained
in a RAUC bundle to the slots that are defined on the target system. This mapping must contain only inactive slots,
and not accidentally a slot that the system currently runs from.

For this mapping, RAUC allows to define different slot classes. A class describes multiple redundant slots of the same
type. This can be, for example, a class for root file system slots or a class for application slots.

Note that despite the fact that classic A+B redundancy is a common setup for many systems, RAUC conceptually
allows any number of redundant slots per class.

Now, multiple slots of different classes can be grouped as a slot group. Such a group is the base for the slot selection
algorithm of RAUC.

Consider, for example, a system with two redundant rootfs slots and two redundant application slots. Then you group
them together to have a fixed set of a rootfs and application slot each that will be used together.

To detect the active slots, RAUC attempts to detect the currently booted slot. For this, it relies on explicit mapping
information provided via the kernel command line, or attempts to find it out using mount information.

All slots of the group containing the active slot will be considered active, too.

2.3.3 Slot Status and Skipping Slot Updates

RAUC hashes each image or archive with SHA-256 when packing it into a bundle and stores this as the image’s
“checksum” in the bundle’s manifest file. This checksum allows to reliably identify and distinguish the image’s
content.

When installing an image, RAUC can write the image’s checksum together with some status information to a central
or per-slot status file (refer statusfile option).

The next time RAUC attempts to install an image to this slot, it will first check the current checksum of the slot by
reading its status information, if available. If this checksum equals the checksum of the image to write, RAUC can
skip updating this slot as a configurable performance optimization (refer install-same per-slot option).

2.3. RAUC’s System View 7

RAUC Documentation, Release 1.10.1

Note that this method assumes the target’s file-systems are read-only as it cannot detect modifications. Given this
restriction, slot skipping can be a lightweight optimization for systems where some slot’s update images change more
frequently than others.

Note: When combining this with RAUC’s built-in HTTP(s) bundle streaming, this will also prevent downloading
skipped images and thus save download volume.

2.3.4 Boot Slot Selection

A system designed to run from redundant slots must always have a component that is responsible for selecting one of
the bootable slots. Usually, this will be some kind of bootloader, but it could also be an initramfs booting a special-
purpose Linux system.

Of course, as a normal user-space tool, RAUC cannot do the selection itself, but provides a well-defined interface and
abstraction for interacting with different bootloaders (e.g. GRUB, Barebox, U-Boot) or boot selection methods.

In order to allow RAUC to switch to the correct slot, its system configuration must specify the name of the respective
slot from the bootloader’s perspective. You also have to set up an appropriate boot selection logic in the bootloader it-
self, either by scripting (as for GRUB, U-Boot) or by using dedicated boot selection infrastructure (such as bootchooser
in Barebox).

The bootloader must also provide a set of variables the Linux userspace can modify in order to change boot order or
priority.

Having this interface ready, RAUC will care for setting the boot logic appropriately. It will, for example, deactivate
the slot to be updated before writing to it, and reactivate it after completing the installation successfully.

2.3.5 Installation and Storage Handling

As mentioned above, RAUC basically writes images to devices or partitions, but also allows installing file system
content from (compressed) tar archives.

In addition to the need for different methods to write to storage (simple copy for block devices, nandwrite for NAND,
ubiupdatevol for UBI volumes, . . .) the tar-based installation requires additional handling and preparation of storage.

Thus, the possible and required handling depends on both the type of input image (e.g. .tar.xz, .ext4, .img) as well as
the type of storage. A tar archive can be installed on different file systems while an ext4 file system slot might be filled
by both an .ext4 image or a tar archive.

To deal with all these possible combinations, RAUC provides an update handler algorithm that uses a matching table
to define valid combinations of image and slot type while specifying the appropriate handling.

2.3.6 Boot Confirmation and Fallback

When designing a robust redundant system, update handling does not end with the successful installation of the update
on the target slots! Having written your image data without any errors does not mean that the system you just installed
will really boot. And even if it boots, there may be crashes or invalid behavior only revealed at runtime or possibly not
before a number of days and reboots.

To allow the boot logic to detect if booting a slot succeeded or failed, it needs to receive some feedback from the booted
system. For marking a boot as either successful or bad, RAUC provides the commands status mark-good and status

8 Chapter 2. RAUC Basics

RAUC Documentation, Release 1.10.1

mark-bad. These commands interact through the boot loader interface with the respective bootloader implementation
to indicate a successful or failed boot.

As detecting an invalid boot is often not possible, i.e. because simply nothing boots or the booted system suddenly
crashes, your system should use a hardware watchdog during boot, and have support in the bootloader to detect
watchdog resets as failed boots.

Also you need to define what happens when a boot slot is detected to be unusable. For most cases it might be desired
to either select one of the redundant slots as fallback or boot into a recovery system. This handling is up to your
bootloader.

2.3. RAUC’s System View 9

RAUC Documentation, Release 1.10.1

10 Chapter 2. RAUC Basics

CHAPTER 3

Using RAUC

For using RAUC in your embedded project, you will need to build at least two versions of it:

• One for your host (build or development) system. This will allow you to create, inspect and modify bundles.

• One for your target system. This can act both as the service for handling the installation on your system, or
as a command line tool that allows triggering the installation, inspecting your system and obtaining bundle
information.

All common embedded Linux build system recipes for RAUC will solve the task of creating appropriate binaries for
you as well as caring for bundle creation and partly system configuration. If you intend to use RAUC with Yocto, use
the meta-rauc layer, in case you use PTXdist, simply enable RAUC in your configuration.

Note: When using the RAUC service from your application, the D-Bus interface is preferable to using the provided
command-line tool.

• Creating Bundles

• Obtaining Bundle Information

• Installing Bundles

• Viewing the System Status

• React to a Successfully Booted System/Failed Boot

• Manually Switch to a Different Slot

• Customizing the Update

• Using the D-Bus API

• Debugging RAUC

11

https://github.com/rauc/meta-rauc

RAUC Documentation, Release 1.10.1

3.1 Creating Bundles

To create an update bundle on your build host, RAUC provides the bundle sub-command:

rauc bundle --cert=<certfile> --key=<keyfile> --keyring=<keyringfile> <input-dir>
→˓<output-file>

Where <input-dir> must be a directory containing all images and scripts the bundle should include, as well as a
manifest file manifest.raucm that describes the content of the bundle for the RAUC updater on the target: which
image to install to which slot, which scripts to execute etc. Note that all files in <input-dir> will be included in
the bundle, not just those specified in the manifest (see also the example and the reference). <output-file> must
be the path of the bundle file to create.

Instead of the certfile and keyfile arguments, PKCS#11 URLs such as 'pkcs11:token=rauc;
object=autobuilder-1' can be used to avoid storing sensitive key material as files (see PKCS#11 Support
for details).

While the --cert and --key argument are mandatory for signing and must provide the certificate and private key
that should be used for creating the signature, the --keyring argument is optional and (if given) will be used for
verifying the trust chain validity of the signature after creation. Note that this is very useful to prevent signing with
obsolete certificates, etc.

3.2 Obtaining Bundle Information

rauc info [--output-format=<format>] <input-file>

The info command lists the basic meta data of a bundle (compatible, version, build-id, description) and the images
and hooks contained in the bundle.

You can control the output format depending on your needs. By default it will print a human readable representa-
tion of the bundle not intended for being processed programmatically. Alternatively you can obtain a shell-parsable
description or a JSON representation of the bundle content.

3.3 Installing Bundles

To actually install an update bundle on your target hardware, RAUC provides the install command:

rauc install <input-file>

Alternatively you can trigger a bundle installation using the D-Bus API.

3.4 Viewing the System Status

For debugging purposes and for scripting it is helpful to gain an overview of the current system as RAUC sees it. The
status command allows this:

rauc status [--detailed] [--output-format=<format>]

You can choose the output style of RAUC status depending on your needs. By default it will print a human readable
representation of your system’s most important properties. Alternatively you can obtain a shell-parsable description,

12 Chapter 3. Using RAUC

RAUC Documentation, Release 1.10.1

or a JSON representation of the system status. If more information is needed such as the slots’ status add the command
line option --detailed.

3.5 React to a Successfully Booted System/Failed Boot

Normally, the full system update chain is not complete before being sure that the newly installed system runs without
any errors. As the definition and detection of a successful operation is really system-dependent, RAUC provides
commands to preserve a slot as being the preferred one to boot or to discard a slot from being bootable.

rauc status mark-good

After verifying that the currently booted system is fully operational, one wants to signal this information to the under-
lying bootloader implementation which then, for example, resets a boot attempt counter.

rauc status mark-bad

If the current boot failed in some kind, this command can be used to communicate that to the underlying bootloader
implementation. In most cases this will disable the currently booted slot or at least switch to a different one.

Although not very useful in the field, both commands recognize an optional argument to explicitly identify the slot to
act on:

rauc status mark-{good,bad} [booted | other | <SLOT_NAME>]

This is to maintain consistency with respect to rauc status mark-active where that argument is definitively
wanted, see here.

3.6 Manually Switch to a Different Slot

One can think of a variety of reasons to switch the preferred slot for the next boot by hand, for example:

• Recurrently test the installation of a bundle in development starting from a known state.

• Activate a slot that has been installed sometime before and whose activation has explicitly been prevented at
that time using the system configuration file’s parameter activate-installed.

• Switch back to the previous slot because one really knows better™.

To do so, RAUC offers the subcommand

rauc status mark-active [booted | other | <SLOT_NAME>]

where the optional argument decides which slot to (re-)activate at the expense of the remaining slots. Choosing other
switches to the next bootable slot that is not the one that is currently booted. In a two-slot-setup this is just. . . the
other one. If one wants to explicitly address a known slot, one can do so by using its slot name which has the form
<slot-class>.<idx> (e.g. rootfs.1), see this part of section System Configuration File. Last but not least,
after switching to a different slot by mistake, before having rebooted this can be remedied by choosing booted as the
argument which is, by the way, the default if the optional argument has been omitted. The date and time of activation
as well as the number of activations is part of the slot’s metadata which is stored in the slot status file, see section Slot
Status.

3.5. React to a Successfully Booted System/Failed Boot 13

RAUC Documentation, Release 1.10.1

3.7 Customizing the Update

RAUC provides several ways to customize the update process. Some allow adding and extending details more fine-
grainedly, some allow replacing major parts of the default behavior of RAUC.

In general, there exist three major types of customization:

• configuration parameters (in rootfs config file /etc/rauc/system.conf)

• handlers (executables in rootfs)

• hooks (executables in bundle)

The first type, configuration parameters, allow controlling parameters of the update in a predefined way.

The second type, using handlers, allows extending or replacing the installation process. They are executables (most
likely shell scripts) located in the root filesystem and configured in the system’s configuration file. They control static
behavior of the system that should remain the same over future updates.

The last type are hooks. They are similar to handlers, except that they are contained in the update bundle. Thus they
allow to flexibly extend or customize one or more updates by some special behavior. A common example would be
using a per-slot post-install hook that handles configuration migration for a new software version. Hooks are especially
useful to handle details of installing an update which were not considered in the previously deployed version.

In the following, configuration parameters, handlers and hooks will be explained in more detail.

3.7.1 System Configuration Parameters

Beside providing the basic slot layout, RAUC’s system configuration file (system.conf) also allows you to config-
ure parts of its runtime behavior, such as handlers (see below), paths, etc. For a detailed list of possible configuration
options, see System Configuration File section in the Reference chapter.

3.7.2 System-Based Customization: Handlers

Handlers are executables located in the target’s root file system that allow extending the installation process on system
side. They must be specified in the targets System Configuration File.

For a detailed list of all environment variables exported for the handler scripts, see the Custom Handlers (Interface)
section.

Pre-Install Handler

[handlers]
pre-install=/usr/lib/rauc/pre-install

RAUC will call the pre-install handler (if given) during the bundle installation process, right before calling the default
or custom installation process. At this stage, the bundle is mounted, its content is accessible and the target group has
been determined successfully.

If calling the handler fails or the handler returns a non-zero exit code, RAUC will abort installation with an error.

Post-Install Handler

[handlers]
post-install=/usr/lib/rauc/post-install

14 Chapter 3. Using RAUC

RAUC Documentation, Release 1.10.1

The post-install handler will be called right after RAUC successfully performed a system update. If any error occurred
during installation, the post-install handler will not be called.

Note that a failed call of the post-install handler or a non-zero exit code will cause a notification about the error but
will not change the result of the performed update anymore.

A possible usage for the post-install handler could be to trigger an automatic restart of the system.

System-Info Handler

[handlers]
system-info=/usr/lib/rauc/system-info

The system-info handler is called after loading the configuration file. This way it can collect additional variables from
the system, like the system’s serial number.

The handler script can return variables by echoing <VARIABLE-NAME>=<value> to stdout, like
RAUC_SYSTEM_SERIAL or RAUC_SYSTEM_VARIANT.

3.7.3 Bundle-Based Customization: Hooks

Unlike handlers, hooks are part of the update bundle and must be specified in the bundle’s Manifest file and handled
by a common executable. Hooks allow the author of a bundle to add or replace functionality for the installation of a
specific bundle. This can be useful for performing additional migration steps, checking for specific previously installed
bundle versions or for manually handling updates of images RAUC cannot handle natively.

To reduce the complexity and number of files in a bundle, all hooks must be handled by a single executable that is
registered in the bundle’s manifest:

[hooks]
filename=hook

Each hook must be activated explicitly and leads to a call of the hook executable with a specific argument that allows
to distinguish between the different hook types. Multiple hook types must be separated with a ;.

In the following the available hooks are listed. Depending on their purpose, some are image-specific, i.e. they will be
executed for the installation of a specific image only, while some other are global.

Install Hooks

Install hooks operate globally on the bundle installation.

For a detailed list of all environment variables exported for the hooks executable, see the Install Hooks Interface
section.

Install-Check Hook

[hooks]
filename=hook
hooks=install-check

This hook will be executed instead of the normal compatible check in order to allow performing a custom compatibility
check based on compatible and/or version information.

To indicate that a bundle should be rejected, the script must return with an exit code >= 10.

3.7. Customizing the Update 15

RAUC Documentation, Release 1.10.1

If available, RAUC will use the last line printed to standard error by the hook executable as the rejection reason
message and provide it to the user:

#!/bin/sh

case "$1" in
install-check)

if [["$RAUC_MF_COMPATIBLE" != "$RAUC_SYSTEM_COMPATIBLE"]]; then
echo "Compatible does not match!" 1>&2
exit 10

fi
;;

*)
exit 1
;;

esac

exit 0

Slot Hooks

Slot hooks are called for each slot an image will be installed to. In order to enable them, you have to specify them in
the hooks key under the respective image section.

Note that hook slot operations will be passed to the executable with the prefix slot-. Thus if you intend to check for
the pre-install hook, you have to check for the argument to be slot-pre-install.

For a detailed list of all environment variables exported for the hooks executable, see the Slot Hooks Interface section.

Pre-Install Hook

The pre-install hook will be called right before the update procedure for the respective slot will be started. For slot
types that represent a mountable file system, the hook will be executed with having the file system mounted.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=pre-install

Post-Install Hook

The post-install hook will be called right after the update procedure for the respective slot was finished successfully.
For slot types that represent a mountable file system, the hook will be executed with having the file system mounted.
This allows to write some post-install information to the slot. It is also useful to copy files from the currently active
system to the newly installed slot, for example to preserve application configuration data.

[hooks]
filename=hook

[image.rootfs]
(continues on next page)

16 Chapter 3. Using RAUC

RAUC Documentation, Release 1.10.1

(continued from previous page)

filename=rootfs.img
size=...
sha256=...
hooks=post-install

An example on how to use a post-install hook:

#!/bin/sh

case "$1" in
slot-post-install)

only rootfs needs to be handled
test "$RAUC_SLOT_CLASS" = "rootfs" || exit 0

touch "$RAUC_SLOT_MOUNT_POINT/extra-file"
;;

*)
exit 1
;;

esac

exit 0

Install Hook

The install hook will replace the entire default installation process for the target slot of the image it was specified
for. Note that when having the install hook enabled, pre- and post-install hooks will not be executed and having an
image (i.e. filename set) is optional, too! The install hook allows to fully customize the way a slot is updated. This
allows performing special installation methods that are not natively supported by RAUC, for example to upgrade the
bootloader to a new version while also migrating configuration settings.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=install

or, without filename:

[hooks]
filename=hook

[image.datafs]
hooks=install

3.7.4 Full Custom Update

For some special tasks (recovery, testing, migration), it might be required to completely replace the default RAUC
update mechanism and to only use its infrastructure and the signature verification for executing an application or a
script on the target side.

3.7. Customizing the Update 17

RAUC Documentation, Release 1.10.1

For this case, RAUC allows to define a full custom handler in a bundle’s manifest that will be executed instead of the
built-in slot update handling:

[update]
compatible=Test Platform

[handler]
filename=custom-handler.sh

The handler script/binary must be part of the bundle.

Refer manifest [handler] section description for details about how the full custom handler can be configured and gets
called.

3.8 Using the D-Bus API

The RAUC D-BUS API allows seamless integration into existing or project-specific applications, incorporation with
bridge services such as the rauc-hawkbit client and also the rauc CLI uses it.

The API’s service domain is de.pengutronix.rauc while the object path is /.

3.8.1 Installing a Bundle

The D-Bus API’s main purpose is to trigger and monitor the installation process via its Installer interface.

The InstallBundle method call triggers the installation of a given bundle in the background and returns imme-
diately. Upon completion of the installation RAUC emits the Completed signal, indicating either successful or
failed installation. For details on triggering the installation process, see the The InstallBundle() Method chapter in the
reference documentation.

While the installation is in progress, constant progress information will be emitted in form of changes to the
Progress property.

3.8.2 Processing Progress Data

The progress property will be updated upon each change of the progress value. For details see the The “Progress”
Property chapter in the reference documentation.

To monitor Progress property changes from your application, attach to the PropertiesChanged signal and
filter on the Operation properties.

Each progress step emitted is a tuple (percentage, message, nesting depth) describing a tree of
progress steps:

"Installing" (0%)
"Determining slot states" (0%)
"Determining slot states done." (20%)
"Checking bundle" (20%)

"Verifying signature" (20%)
"Verifying signature done." (40%)

"Checking bundle done." (40%)
...

"Installing done." (100%)

18 Chapter 3. Using RAUC

RAUC Documentation, Release 1.10.1

This hierarchical structure allows applications to decide for the appropriate granularity to display information.
Progress messages with a nesting depth of 1 are only Installing and Installing done.. A nesting depth of
2 means more fine-grained information while larger depths are even more detailed.

Additionally, the nesting depth information allows the application to print tree-like views as shown above. The
percentage value always goes from 0 to 100 while the message is always a human-readable English string.
For internationalization you may use a gettext-based approach.

3.8.3 Examples Using busctl Command

Triggering an installation:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer InstallBundle sa{sv} "
→˓<bundle-path>/<bundle-url>" 0

Mark a slot as good:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer Mark ss "good"
→˓"rootfs.0"

Mark a slot as active:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer Mark ss "active"
→˓"rootfs.0"

Get the Operation property containing the current operation:

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer Operation

Get the Progress property containing the progress information:

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer Progress

Get the LastError property, which contains the last error that occurred during an installation.

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer LastError

Get the status of all slots

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer GetSlotStatus

Get the current primary slot

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer GetPrimary

Monitor the D-Bus interface

busctl monitor de.pengutronix.rauc

Obtain bundle information

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer InspectBundle sa{sv} "
→˓<bundle-path>/<bundle-url>" 0

3.8. Using the D-Bus API 19

https://www.gnu.org/software/gettext/

RAUC Documentation, Release 1.10.1

3.9 Debugging RAUC

When RAUC fails to start on your target during integration or later during installation of new bundles it can have a
variety of causes.

This section will lead you through the most common options you have for debugging what actually went wrong.

In each case it is quite essential to know that RAUC, if not compiled with --disable-service runs as a service
on your target that is either controlled by your custom application or by the RAUC command line interface.

The frontend will always only show the ‘high level’ error output, e.g. when an installation failed:

rauc-Message: 08:27:12.083: installing /home/enrico/Code/rauc/good-bundle-hook.raucb:
→˓LastError: Failed mounting bundle: failed to run mount: Child process exited with
→˓code 1
rauc-Message: 08:27:12.083: installing /home/enrico/Code/rauc/good-bundle-hook.raucb:
→˓idle
Installing `/home/enrico/Code/rauc/good-bundle-hook.raucb` failed

In simple cases this might be sufficient for identifying the actual problem, in more complicated cases this may give a
rough hint. For a more detailed look on what went wrong you need to inspect the rauc service log instead.

If you run RAUC using systemd, the log can be obtained using

journalctl -u rauc

When using SysVInit, your service script needs to configure logging itself. A common way is to dump the log e.g.
/var/log/rauc.

It may also be worth starting the RAUC service via command line on a second shell to have a live view of what is
going on when you invoke e.g. rauc install on the first shell.

3.9.1 Inspecting Bundle Contents

Sometimes during development, it is useful to check whether the bundle contents are as expected. While RAUC
bundles could just be mounted as a squashfs, using rauc mount also uses the same checks and mechanisms as
rauc install (device-mapper/loopback & network support). The bundle is mounted below the configured mount
prefix (/mnt/rauc/bundle by default). When you are done, just use umount <mount point> to unmount
the bundle.

$ rauc mount /var/tmp/test/good-verity-bundle.raucb
rauc-Message: 12:37:36.869: Reading bundle: /var/tmp/test/good-verity-bundle.raucb
rauc-Message: 12:37:36.889: Verifying bundle signature...
rauc-Message: 12:37:36.894: Verified inline signature by 'O = Test Org, CN = Test Org
→˓Release-1'
rauc-Message: 12:37:36.896: Mounting bundle '/var/tmp/test/good-verity-bundle.raucb'
→˓to '/mnt/rauc/bundle'
rauc-Message: 12:37:36.931: Configured loop device '/dev/loop0' for 24576 bytes
rauc-Message: 12:37:36.934: Configured dm-verity device '/dev/dm-0'
Mounted bundle at /mnt/rauc/bundle. Use 'umount /mnt/rauc/bundle' to unmount.
$ ls -l /mnt/rauc/bundle
total 21
-rw-r--r-- 1 root root 8192 Jun 21 14:51 appfs.img
-rwxr-xr-x 1 root root 2241 Sep 15 2017 custom_handler.sh
-rwxr-xr-x 1 root root 1421 Aug 31 2017 hook.sh
-rw-r--r-- 1 root root 308 Jun 21 14:51 manifest.raucm

(continues on next page)

20 Chapter 3. Using RAUC

RAUC Documentation, Release 1.10.1

(continued from previous page)

-rw-r--r-- 1 root root 8192 Jun 21 14:51 rootfs.img
$ umount /mnt/rauc/bundle

Note: This command is only intended for use during development.

3.9.2 Increasing Debug Verbosity

Both for the service and the command line interface it is often useful to increase the log level for narrowing down the
actual error cause or gaining more information about the circumstances when the error occurs.

RAUC uses glib and the glib logging framework with the basic log domain ‘rauc’.

For simple cases, you can activate logging by passing the -d or --debug option to either the CLI:

rauc install -d bundle.raucb ..

or the service (you might need to modify your systemd or SysVInit service file).

rauc service -d

For more fine grained and advanced debugging options, use the G_MESSAGES_DEBUG environment variable. This
allows enabling different log domains. Currently available are:

all enable all log domains

rauc enable default RAUC log domain (same as calling with -d)

rauc-signature enable logging of signature details

This will dump the full CMS structure during verification and can help identify problems with the
signature details.

rauc-subprocess enable logging of subprocess calls

This will dump the entire program call invoked by RAUC and can help tracing down or reproducing
issues caused by other programs invoked.

Example invocation:

G_MESSAGES_DEBUG="rauc rauc-subprocess" rauc service

Enabling Verbose CURL Output

If you suspect an issue is related to network access (using the CURL library), you can set RAUC_CURL_VERBOSE=1.
This will cause RAUC to enable CURLOPT_VERBOSE when configuring a CURL context.

3.9.3 Reproducing Issues using QEMU Test Setup

The RAUC source code repository provides a :ref:qemu-test sec-contributing-qemu-test script, mainly
meant to be used for running the unit tests in a safe environment. But this can also be used to reproduce and debug
basic functionality of rauc.

When running:

3.9. Debugging RAUC 21

https://docs.gtk.org/glib/logging.html
https://curl.se/libcurl/c/CURLOPT_VERBOSE.html

RAUC Documentation, Release 1.10.1

$./qemu-test system

you will boot into a QEMU shell that has a mocked RAUC setup allowing you to inspect status, install procedure, etc.
For example:

root@qemu-test:/home/user/git/rauc# rauc status
=== System Info ===
Compatible: Test Config
Variant:
Booted from: rootfs.0 (A)

=== Bootloader ===
Activated: rootfs.0 (A)

=== Slot States ===
x [rootfs.0] (/dev/root, raw, booted)

bootname: A
mounted: /
boot status: good

[appfs.0] (/dev/null, raw, active)

o [rootfs.1] (/tmp/rootdev, raw, inactive)
bootname: B
boot status: good

[appfs.1] (/tmp/appdev, raw, inactive)

22 Chapter 3. Using RAUC

CHAPTER 4

Examples

4.1 Full System Example

This chapter aims to explain the basic concepts needed for RAUC using a simple but realistic scenario.

The system is x86-based with 1GiB of disk space and 1GiB of RAM. GRUB was selected as the bootloader and we
want to have two symmetric installations. Each installation consists of an ext4 root file system only (which contains
the matching kernel image).

We want to provide update bundles using a USB memory stick. We don’t have a hardware watchdog, so we need to
explicitly tell GRUB whether a boot was successful.

This scenario can be easily reproduced using a QEMU virtual machine.

4.1.1 PKI Setup

RAUC uses an x.509 PKI (public key infrastructure) to sign and verify updates. To create a simple key pair for testing,
we can use openssl:

> openssl req -x509 -newkey rsa:4096 -nodes -keyout demo.key.pem -out demo.cert.pem -
→˓subj "/O=rauc Inc./CN=rauc-demo"

For actual usage, setting up a real PKI (with a CA separate from the signing keys and a revocation infrastructure) is
strongly recommended. OpenVPN’s easy-rsa is a good first step. See Security for more details.

4.1.2 RAUC Configuration

We need a RAUC system configuration file to describe the slots which can be updated

[system]
compatible=rauc-demo-x86
bootloader=grub

(continues on next page)

23

https://www.gnu.org/software/grub/
https://www.gnu.org/software/grub/
http://wiki.qemu.org/
https://github.com/OpenVPN/easy-rsa

RAUC Documentation, Release 1.10.1

(continued from previous page)

mountprefix=/mnt/rauc
bundle-formats=-plain

[keyring]
path=demo.cert.pem

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

In this case, we need to place the signing certificate into /etc/rauc/demo.cert.pem, so that it is used by RAUC
for verification.

4.1.3 GRUB Configuration

GRUB itself is stored on /dev/sda1, separate from the root file system. To access GRUB’s environment file, this
partition should be mounted to /boot (which means that the environment file is found at /boot/grub/grubenv).

GRUB does not provide the boot target selection logic as needed by RAUC out of the box. Instead we use a script to
implement it

default=0
timeout=3

set ORDER="A B"
set A_OK=0
set B_OK=0
set A_TRY=0
set B_TRY=0
load_env

select bootable slot
for SLOT in $ORDER; do

if ["$SLOT" == "A"]; then
INDEX=0
OK=$A_OK
TRY=$A_TRY
A_TRY=1

fi
if ["$SLOT" == "B"]; then

INDEX=1
OK=$B_OK
TRY=$B_TRY
B_TRY=1

fi
if ["$OK" -eq 1 -a "$TRY" -eq 0]; then

default=$INDEX
break

fi
(continues on next page)

24 Chapter 4. Examples

RAUC Documentation, Release 1.10.1

(continued from previous page)

done

reset booted flags
if ["$default" -eq 0]; then

if ["$A_OK" -eq 1 -a "$A_TRY" -eq 1]; then
A_TRY=0

fi
if ["$B_OK" -eq 1 -a "$B_TRY" -eq 1]; then

B_TRY=0
fi

fi

save_env A_TRY B_TRY

CMDLINE="panic=60 quiet"

menuentry "Slot A (OK=$A_OK TRY=$A_TRY)" {
linux (hd0,2)/kernel root=/dev/sda2 $CMDLINE rauc.slot=A

}

menuentry "Slot B (OK=$B_OK TRY=$B_TRY)" {
linux (hd0,3)/kernel root=/dev/sda3 $CMDLINE rauc.slot=B

}

GRUB since 2.02-beta1 supports the eval command, which can be used to express the logic above more concisely.

The grubenv file can be modified using grub-editenv, which is shipped by GRUB. It can also be used to inspect
the current contents:

> grub-editenv /boot/grub/grubenv list
ORDER="A B"
A_OK=0
B_OK=0
A_TRY=0
B_TRY=0

The initial installation of the bootloader and rootfs on the system is out of scope for RAUC. A common approach is
to generate a complete disk image (including the partition table) using a build system such as OpenEmbedded/Yocto,
PTXdist or buildroot.

4.1.4 Bundle Generation

To create a bundle, we need to collect the components which should become part of the update in a directory (in this
case only the root file system image):

> mkdir temp-dir/
> cp .../rootfs.ext4.img temp-dir/

Next, to describe the bundle contents to RAUC, we create a manifest file. This must be named manifest.raucm:

> cat >> temp-dir/manifest.raucm << EOF
[update]
compatible=rauc-demo-x86
version=2015.04-1

(continues on next page)

4.1. Full System Example 25

RAUC Documentation, Release 1.10.1

(continued from previous page)

[bundle]
format=verity

[image.rootfs]
filename=rootfs.ext4.img
EOF

Note that we can omit the sha256 and size parameters for the image here, as RAUC will fill them out automatically
when creating the bundle.

Finally, we run RAUC to create the bundle:

> rauc --cert demo.cert.pem --key demo.key.pem bundle temp-dir/ update-2015.04-1.raucb
> rm -r temp-dir

We now have the update-2015.04-1.raucb bundle file, which can be copied onto the target system, in this case
using a USB memory stick.

4.1.5 Update Installation

Having copied update-2015.04-1.raucb onto the target, we only need to run RAUC:

> rauc install /mnt/usb/update-2015.04-1.raucb

After cyptographically verifying the bundle, RAUC will now determine the active slots by looking at the rauc.slot
variable. Then, it can select the target slot for the update image from the inactive slots.

When the update is installed completely, we just need to restart the system. GRUB will then try to boot the newly
installed rootfs. Finally, if the boot was successful, we need to inform the bootloader:

> rauc status mark-good

If systemd is available, it is useful to run this command late in the boot process and declare dependencies on the main
application(s).

If the boot is not marked as successful, GRUB will try the other installation on the next boot. By configuring the kernel
and systemd to reboot on critical errors and by using a (software) watchdog, hangs in a non-working installation can
be avoided.

4.1.6 Write Slots Without Update Mechanics

Assuming an image has been copied to or exists on the target, a manual slot write can be performed by:

> rauc write-slot rootfs.0 rootfs.ext4

This will write the rootfs image rootfs.ext4 to the slot rootfs.0. Note that this bypasses all update mechanics
like hooks, slot status etc.

4.2 Example Slot Configurations

This provides some common examples on how to configure slots in your system.conf for different scenarios.

26 Chapter 4. Examples

http://www.freedesktop.org/wiki/Software/systemd/

RAUC Documentation, Release 1.10.1

4.2.1 Symmetric A/B Setup

This is the default case when having a fully-redundant root file system

[...]

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

4.2.2 Asymmetric A/Recovery Setup

In case storage is too restricted for a full A/B redundancy setup, an asymmetric setup with a dedicated update/recovery
slot can be used. The recovery slot can be way smaller than the rootfs one as it needs to contain only the tools for
updating the rootfs slot. Because the recovery slot is not meant to be updated in most cases, we can manifest this for
RAUC by setting the readonly=true option.

[...]

[slot.recovery.0]
device=/dev/sda2
type=ext4
bootname=R
readonly=true

[slot.rootfs.0]
device=/dev/sda3
type=ext4
bootname=A

4.2.3 Separate Application Partition

RAUC allows to have a separate redundant set of slots for the application (or other purpose) that have a fixed relation
to their corresponding rootfs slots. RAUC assures that an update of the entire slot group (rootfs + appfs) is atomic.

When defining appfs slots, be sure to set the correct parent relation to the associated bootable slot.

[...]

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

(continues on next page)

4.2. Example Slot Configurations 27

RAUC Documentation, Release 1.10.1

(continued from previous page)

[slot.appfs.0]
parent=rootfs.0
device=/dev/sda4
type=ext4

[slot.appfs.1]
parent=rootfs.1
device=/dev/sda5
type=ext4

4.2.4 Atomic Bootloader Updates (eMMC)

Updating the Bootloader is also possible with RAUC, despite this is a bit more critical than updating the rootfs, as
there is no fallback mechanism.

However, depending on the ROM loader it can at least be possible to perform the bootloader update atomically. The
most common example for this is using the two boot partitions of an eMMC for atomic bootloader updates which
RAUC supports out-of-the-box (refer Update Bootloader in eMMC Boot Partitions).

[...]

[slot.bootloader.0]
device=/dev/mmcblk0
type=boot-emmc

[slot.rootfs.0]
device=/dev/mmcblk0p1
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/mmcblk0p2
type=ext4
bootname=B

4.2.5 Symmetric A/B Setup + Recovery

Booting into the recovery slot should normally be handled by the bootloader if it fails to load the symmetric slots.

Thus from the RAUC perspective this setup is identical to the default A/B setup.

Anyway, you can still define it as a slot if you need to be able to provide an update for this, too.

4.3 Example Integrations

There are a couple of community projects that can serve as a base or blueprint for integrating RAUC into projects or
products.

4.3.1 OpenEmbedded / Yocto Project

28 Chapter 4. Examples

RAUC Documentation, Release 1.10.1

meta-rauc-communit

The meta-rauc-community repository contains layers for some platforms, demonstrating different ways to use RAUC.

Currently supported platforms are:

• qemux86-64

• RaspberryPi

• CuBox-i

• Allwinner SunXi

• NVIDIA Tegra

Eclipse Leda

Leda, the Eclipse project for software-defined vehicles, provides an example RAUC integration:

https://eclipse-leda.github.io/leda/docs/device-provisioning/self-update/rauc-integration/

4.3.2 Buildroot

Buildroot + RAUC (br2rauc)

The br2rauc project provides an example Buildroot integration for the Raspberry PI CM4.

4.3. Example Integrations 29

https://github.com/rauc/meta-rauc-community
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-qemux86
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-raspberrypi
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-nxp
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-sunxi
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-tegra
https://eclipse-leda.github.io/leda/docs/device-provisioning/self-update/rauc-integration/
https://github.com/cdsteinkuehler/br2rauc

RAUC Documentation, Release 1.10.1

30 Chapter 4. Examples

CHAPTER 5

Scenarios

• Symmetric Root-FS Slots

• Asymmetric Slots

• Multiple Slots

• Additional Rescue Slot

5.1 Symmetric Root-FS Slots

This is the probably the most common setup. In this case, two root partitions of the same size are used (often called
“A” and “B”). When running from “A”, an update is installed into “B” and vice versa. Both slots are intended to
contain equivalent software, including the main application.

To reduce complexity, the kernel and other files necessary for booting the system (such as the device tree) are stored
in the root-fs partition (usually in /boot). This requires a boot-loader with support for the root-fs type.

The RAUC system.conf would contain two slots similar to the following:

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system-a

[slot.rootfs.1]
device=/dev/sda1
type=ext4
bootname=system-b

The main advantage of this setup is its simplicity:

• An update can be started when running in either slot and while the main application is still active.

31

RAUC Documentation, Release 1.10.1

• The fallback logic in the boot-loader can be relatively simple.

• Easy to understand update process for end-users and technicians.

The main reasons for not using it are either:

• Too limited storage space (use asymmetric slots instead)

• Additional requirements regarding redundancy or update flexibility (see below)

5.2 Asymmetric Slots

This setup is useful if the storage space is very limited. Instead of requiring two partitions each large enough for the
full installation, a small partition is used instead of the second one (often called “main” and “update” or “rescue”).

The slot configuration for this in system.conf could look like this:

[slot.update.0]
device=/dev/sda0
type=raw
bootname=update

[slot.main.1]
device=/dev/sda1
type=ext4
bootname=main

To update the main system, a reboot into the update system is needed (as otherwise the main slot would still be active).
Then, the update system would trigger the installation into the main slot and finally switch back to the newly updated
main system. The update system itself can be updated directly from the running main system.

Some disadvantages of this configuration are:

• Two reboots are required for an update.

• A failed update results in an unavailable main application until a subsequent update is installed successfully.

• If some data in the main slot needs to be preserved during the update, it must be stored somewhere else before
writing the new image to the slot and then restored.

As the update system is normally small enough to fit completely into RAM, it can be stored as a Linux kernel with
internal initramfs. This avoids compressing kernel and user-space separately, increasing the compression ratio. For
this, the update slot type should be configured to raw.

5.3 Multiple Slots

Splitting a system into multiple slots can be useful if the application should be updated independently of the base
system. This can be combined with either symmetric or asymmetric setups as described above.

For example, the main application could be split of from the root file-system. This can be useful if the base system
is developed independently from the application(s) or by a different team. By explicitly distinguishing between the
two, different versions of the application or even completely different applications can reuse the same base system
(root-file-system).

Another reason to configure multiple slots for one system can be to store the boot files (kernel, . . .) separately, which
can help reduce boot time and complexity in the boot-loader.

32 Chapter 5. Scenarios

RAUC Documentation, Release 1.10.1

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system-a

[slot.appfs.0]
device=/dev/sda1
type=ext4
parent=rootfs.0

[slot.rootfs.1]
device=/dev/sdb0
type=ext4
bootname=system-b

[slot.appfs.1]
device=/dev/sdb1
type=ext4
parent=rootfs.1

Warning: Currently, RAUC has no way to ensure compatibility between rootfs and appfs when installing a bundle
containing only an image for one of them. Either always build bundles containing images for all required slots or
ensure that incompatible updates are not installed outside of RAUC. To solve this, a bundle would need to contain
the metadata (size and hash) for the missing bundle and RAUC would need to verify the state of those slots before
installing the bundle.

5.4 Additional Rescue Slot

By adding an additional rescue (or recovery) slot to one of the symmetric scenarios above, the robustness against some
error cases can be improved:

• A software error has remained undetected over some releases, rendering both normal slots inoperable over time.

• The normal slots are mounted read-write during normal operation and have become corrupted (for example by
incorrect handling of sudden power failures).

• A configuration error causes both normal slots to fail in the same way.

[slot.rescue.0]
device=/dev/sda0
type=raw

[slot.rootfs.0]
device=/dev/sda1
type=ext4
bootname=system-a

[slot.rootfs.1]
device=/dev/sda2
type=ext4
bootname=system-b

The rescue slot would not be changed by normal updates (which only write to A and B in turn). Depending on the
use case, the boot-loader would start the rescue system after repeated boot failures of the normal systems or on user

5.4. Additional Rescue Slot 33

RAUC Documentation, Release 1.10.1

request.

34 Chapter 5. Scenarios

CHAPTER 6

Integration

• Partitioning Your Device

– SD Card

– eMMC

– SSD

– NAND

• RAUC System Configuration

– Slot Configuration

• Library Dependencies

• Kernel Configuration

• Required Host Tools

• Required Target Tools

• Interfacing with the Bootloader

– Booted Slot Detection

– Barebox

– U-Boot

– GRUB

– EFI

– Custom

• Init System and Service Startup

– Systemd Integration

35

RAUC Documentation, Release 1.10.1

• D-Bus Integration

• Watchdog Configuration

• Yocto

– Target System Setup

– Using RAUC on the Host System

– Bundle Generation

• PTXdist

– Integration into Your RootFS Build

– Create Update Bundles from your RootFS

• Buildroot

• Package-Based Distributions

• Bundle Format Migration

If you intend to prepare your platform for using RAUC as an update framework, this chapter will guide you through
the required steps and show the different ways you can choose.

To integrate RAUC, you first need to be able to build RAUC as both a host and a target application. The host application
is needed for generating update bundles while the target application or service performs the core task of RAUC:
updating you device.

In an update system, a lot of components have to play together and have to be configured appropriately to interact
correctly. In principle, these are:

• Hardware setup, devices, partitions, etc.

• The bootloader

• The Linux kernel

• The init system

• System utilities (mount, mkfs, . . .)

• The update tool, RAUC itself

Note: When integrating RAUC into your embedded Linux system, and in general, we highly recommend using a
Linux system build system like Yocto / OpenEmbedded or PTXdist that allows you to have well defined software
states while easing integration of the different components involved.

For information about how to integrate RAUC using these tools, refer to the sections Yocto or PTXdist.

6.1 Partitioning Your Device

A basic requirement for a redundant update system is to have your storage set up properly. In a simple case, this means
having two redundant partitions of equal size for an A/B setup, or a tiny and a larger partition for a recovery/A setup.

Partitioning the storage is part of the bootstrap process and not in the scope of an update tool like RAUC.

Additionally, you may also need to reserve space for your bootloader, boot state information (such as the state backend
for barebox or environment partition for U-Boot), data partition(s) or similar.

36 Chapter 6. Integration

RAUC Documentation, Release 1.10.1

Since changing the partition layout is hard or even impossible to change in the field, make sure it meets both current
and possible future requirements.

6.1.1 SD Card

Partitioning your SD Card is quite easy as it can simply be done from your host system by either using a command-line
or graphical tool (fdisk/cfdisk/gparted) or by writing a full SD Card image as generated by your embedded Linux build
system.

Most modern systems should use GPT for partitioning.

6.1.2 eMMC

In contrast to SD cards, an eMMC is fixed to your board and can not be easily pre-programmed before soldering
(except for very large production batches). Accordingly, it usually needs to be set up from a Linux factory image
booted from a secondary boot source such as network (e.g. TFTP), USB (e.g. Android fastboot), or other mass
storage.

A useful tool for automating partitioning at runtime is systemd-repart.

Note that an eMMC also provides dedicated boot partitions that can be selected by setting Extended CSD registers and
thus, if the SoC supports it, allows atomic bootloader updates.

The eMMC specification also supports changing the operational mode of either the entire eMMC or only parts of it to
better match requirements such as write endurance or data retention, e.g. by switching to pSLC mode.

6.1.3 SSD

SSDs can be handled similarly to eMMCs, except that most do not provide boot partition or operational mode support.

Note that you can still make use of atomic bootloader updates here when booting from GPT (or MBR).

6.1.4 NAND

Raw NAND can either be partitioned by devicetree partitions (as a subnode of the NAND controller) or (indirectly)
by using UBI, which supports creating multiple UBI volumes.

Note that when using raw NAND, responsibility for bad block and NAND quirks handling is on your side (or on side
of the NAND handling layer you use). Some bugs or misconfigurations will appear to work fine and only manifest as
sporadic failures much later. If in doubt, using eMMC is recommended, especially for devices with normal quantity,
since debugging NAND issues can be quite time-consuming.

6.2 RAUC System Configuration

The system configuration file is the central configuration in RAUC that abstracts the loosely coupled storage setup,
partitioning and boot strategy of your board to a coherent redundancy setup world view for RAUC.

RAUC expects its central configuration file /etc/rauc/system.conf to describe the system it runs on in a way
that all relevant information for performing updates and making decisions are given.

Note: For a full reference of the system.conf file refer to section System Configuration File.

6.2. RAUC System Configuration 37

https://www.freedesktop.org/software/systemd/man/systemd-repart.html

RAUC Documentation, Release 1.10.1

Similar to other configuration files used by RAUC, the system configuration uses a key-value syntax (similar to those
known from .ini files).

6.2.1 Slot Configuration

The most important step is to describe the slots that RAUC should use when performing updates. Which slots are
required and what you have to take care of when designing your system will be covered in the chapter Scenarios. This
section assumes that you have already decided on a setup and want to describe it for RAUC.

A slot is defined by a slot section. The naming of the section must follow a simple format: [slot.<slot-class>.
<slot-index>] where <slot-class> describes a class of possibly multiple redundant slots (such as rootfs,
recovery or appfs) and slot-index is the index of the individual slot instance, starting with index 0.

If you have two redundant slots used for the root file system, for example, you should name your sections according
to this example:

[slot.rootfs.0]
device = [...]

[slot.rootfs.1]
device = [...]

RAUC does not have predefined class names. The only requirement is that the class names used in the system config
match those you later use in the update manifests.

The mandatory settings for each slot are:

• the device that holds the (device) path describing where the slot is located,

• the type that defines how to update the target device.

If the slot is bootable, then you also need

• the bootname which is the name the bootloader uses to refer to this slot device.

Slot Type

A list of slot storage types currently supported by RAUC:

Type Description Tar support
raw A partition holding no (known) file system. Only raw image copies may be performed.
ext4 A block device holding an ext4 filesystem. x
nand A raw NAND flash partition.
nor A raw NOR flash partition.
ubivol An UBI partition in NAND.
ubifs An UBI volume containing an UBIFS in NAND. x
vfat A block device holding a vfat filesystem. x
jffs2 A flash memory holding a JFFS2 filesystem. x

Depending on this slot storage type and the slot’s image filename extension, RAUC determines how to extract the
image content to the target slot.

While the generic filename extension .img is supported for all filesystems, it is strongly recommended to use explicit
extensions (e.g. .vfat or .ext4) when possible, as this allows checking during installation that the slot type is
correct.

38 Chapter 6. Integration

RAUC Documentation, Release 1.10.1

Grouping Slots

If multiple slots belong together in a way that they always have to be updated together with the respective other slots,
you can ensure this by grouping slots.

A group must always have a single bootable slot, then all other slots define a parent relationship to this bootable slot
as follows:

[slot.rootfs.0]
...

[slot.appfs.0]
parent = rootfs.0
...

[slot.rootfs.1]
...

[slot.appfs.1]
parent = rootfs.1
...

6.3 Library Dependencies

The minimal requirement for RAUC regardless of whether intended for the host or target side is GLib (minimum
version 2.45.8) as utility library and OpenSSL (>=1.0) for signature handling.

Note: In order to let RAUC detect mounts correctly, GLib must be compiled with libmount support
(--enable-libmount) and at least be 2.49.5.

For network support (enabled with --enable-network), additionally libcurl is required. This is only useful for
the target service.

For JSON-style support (enabled with --enable-json), additionally libjson-glib is required.

6.4 Kernel Configuration

The kernel used on the target device must support both loop block devices and the SquashFS file system to allow
installing RAUC bundles. For the recommended verity bundle format, dm-verity must be supported as well.

In kernel Kconfig you have to enable the following options as either built-in (y) or module (m):

CONFIG_MD
CONFIG_BLK_DEV_DM
CONFIG_BLK_DEV_LOOP
CONFIG_DM_VERITY
CONFIG_SQUASHFS
CONFIG_CRYPTO_SHA256

For streaming support, you have to add CONFIG_BLK_DEV_NBD. For encryption support, you have to add
CONFIG_DM_CRYPT.

6.3. Library Dependencies 39

RAUC Documentation, Release 1.10.1

Note: These drivers may also be loaded as modules. Kernel versions v5.0 to v5.7 will require the patch
7e81f99afd91c937f0e66dc135e26c1c4f78b003 backporting to fix a bug where the bundles cannot be
mounted in a small number of cases.

Note: On ARM SoCs, there are optimized alternative SHA256 implementations available (for
example CONFIG_CRYPTO_SHA2_ARM_CE, CRYPTO_SHA256_ARM or hardware accellerators such as
CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API).

6.5 Required Host Tools

To be able to generate bundles, RAUC requires at least the following host tools:

• mksquashfs

• unsquashfs

When using the RAUC casync integration, the casync tool and fakeroot (for converting archives to directory tree
indexes) must also be available.

6.6 Required Target Tools

RAUC requires and uses a set of target tools depending on the type of supported storage and used image type.

Mandatory tools for each setup are mount and umount, either from Busybox or util-linux

Note that build systems may handle parts of these dependencies automatically, but also in this case you will have to
select some of them manually as RAUC cannot fully know how you intend to use your system.

NAND Flash flash_erase & nandwrite (from mtd-utils)

NOR Flash flash_erase & flashcp (from mtd-utils)

UBIFS mkfs.ubifs (from mtd-utils)

TAR archives You may either use GNU tar or Busybox tar.

If you intend to use Busybox tar, make sure format autodetection and also the compression formats
you use are enabled:

• CONFIG_FEATURE_TAR_AUTODETECT=y

• CONFIG_FEATURE_TAR_LONG_OPTIONS=y

• select needed CONFIG_FEATURE_SEAMLESS_*=y options

ext4 mkfs.ext4 (from e2fsprogs)

vfat mkfs.vfat (from dosfstools)

Depending on the bootloader you use on your target, RAUC also needs the right tool to interact with it:

Barebox barebox-state (from dt-utils)

U-Boot fw_setenv/fw_getenv (from u-boot)

GRUB grub-editenv

40 Chapter 6. Integration

http://www.busybox.net
https://cdn.kernel.org/pub//linux/utils/util-linux/
git://git.infradead.org/mtd-utils.git
git://git.infradead.org/mtd-utils.git
git://git.infradead.org/mtd-utils.git
http://www.gnu.org/software/tar/
http://www.busybox.net
git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git
https://github.com/dosfstools/dosfstools
https://git.pengutronix.de/cgit/tools/dt-utils/
http://git.denx.de/?p=u-boot.git;a=summary

RAUC Documentation, Release 1.10.1

EFI efibootmgr

Note that for running rauc info on the target (as well as on the host), you also need to have the unsquashfs tool
installed.

When using the RAUC casync integration, the casync tool must also be available.

6.7 Interfacing with the Bootloader

RAUC provides support for interfacing with different types of bootloaders. To select the bootloader you have or intend
to use on your system, set the bootloader key in the [system] section of your device’s system.conf.

Note: If in doubt about choosing the right bootloader, we recommend to use barebox as it provides a dedicated boot
handling framework, called bootchooser.

To let RAUC handle a bootable slot, you have to mark it as bootable in your system.conf and configure the name
under which the bootloader identifies this specific slot. This is both done by setting the bootname property.

[slot.rootfs.0]
...
bootname=system0

Amongst others, the bootname property also serves as one way to let RAUC know which slot is currently booted
(running). In the following, the different options for letting RAUC detect the currently booted slot are described.

6.7.1 Booted Slot Detection

For RAUC it is quite essential to know from which slot the system is currently running. We will refer this as the booted
slot. Only reliable detection of the booted slot enables RAUC to determine the set of currently inactive slots (that it
can safely write to).

If possible, one should always prefer to signal the active slot explicitly from the bootloader to the userspace and RAUC.
Only for cases where this explicit way is not possible or unwanted, some alternative approaches of automatically
detecting the currently booted slot are implemented in RAUC.

A detailed list of detection mechanism follows.

Identification via Kernel Commandline

RAUC evaluates different kernel commandline parameters in the order they are listed below.

rauc.slot= and rauc.external

This is the generic way to explicitly set information about which slot was booted by the bootloader. For slots that
are handled by a bootloader slot selection mechanism (such as A+B slots) you should specify the slot’s configured
bootname:

rauc.slot=system0

For special cases where some slots are not handled by the slot selection mechanism (such as a ‘last-resort’ recovery
fallback that never gets explicitly selected) you can also give the name of the slot:

6.7. Interfacing with the Bootloader 41

https://barebox.org/
https://barebox.org/doc/latest/user/bootchooser.html

RAUC Documentation, Release 1.10.1

rauc.slot=recovery.0

When booting from a source not configured in your system.conf (for example from a USB memory stick), you can tell
rauc explicitly with the flag rauc.external. This means that all slots are known to be inactive and will be valid
installation targets. A possible use case for this is to use RAUC during a bootstrapping procedure to perform an initial
installation.

bootchooser.active=

This is the command-line parameter used by barebox’s bootchooser mechanism. It will be set automatically by the
bootchooser framework and does not need any manual configuration. RAUC compares this against each slot’s boot-
name (not the slot’s name as above):

bootchooser.active=system0

root=

If none of the above parameters is given, the root= parameter is evaluated by RAUC to gain information on the
currently booted system. The root= entry contains the device from which device the kernel (or initramfs) should
load the rootfs. RAUC supports parsing different variants for giving these device as listed below.

root=/dev/sda1
root=/dev/ubi0_1

Giving the plain device name is supported, of course.

Note: The alternative ubi rootfs format with root=ubi0:volname is currently unsupported. If you want to refer
to UBI volumes via name in your system.conf, check the FAQ entry How can I refer to devices if the numbering
is not fixed?.

root=PARTLABEL=abcde
root=PARTUUID=01234
root=UUID=01234

Parsing the PARTLABEL, PARTUUID and UUID is supported, which allows referring to a special partition / file system
without having to know the enumeration-dependent sdX name.

RAUC converts the value to the corresponding /dev/disk/by-* symlink name and then to the actual device name.

root=/dev/nfs

RAUC automatically detects NFS boots (by checking if this parameter is set in the kernel command line). There is no
extra slot configuration needed for this as RAUC assumes it is safe to update all available slots in case the currently
running system comes from NFS.

systemd.verity_root_data=

RAUC handles the systemd.verity_root_data= parameter the same as root= above. See the systemd-
veritysetup-generator documentation for details.

42 Chapter 6. Integration

https://www.freedesktop.org/software/systemd/man/systemd-veritysetup-generator.html#systemd.verity_root_data=
https://www.freedesktop.org/software/systemd/man/systemd-veritysetup-generator.html#systemd.verity_root_data=

RAUC Documentation, Release 1.10.1

6.7.2 Barebox

The Barebox bootloader, which is available for many common embedded platforms, provides a dedicated boot source
selection framework, called bootchooser, backed by an atomic and redundant storage backend, named state.

Barebox state allows you to save the variables required by bootchooser with memory specific storage strategies in all
common storage mediums, such as block devices, mtd (NAND/NOR), EEPROM, and UEFI variables.

The Bootchooser framework maintains information about priority and remaining boot attempts while being config-
urable on how to deal with them for different strategies.

To enable the Barebox bootchooser support in RAUC, select it in your system.conf:

[system]
...
bootloader=barebox

Configure Barebox

As mentioned above, Barebox support requires you to have the bootchooser framework with barebox state backend
enabled. In Barebox’ Kconfig you can enable this by setting:

CONFIG_BOOTCHOOSER=y
CONFIG_STATE=y
CONFIG_STATE_DRV=y

To debug and interact with bootchooser and state in Barebox, you should also enable these tools:

CONFIG_CMD_STATE=y
CONFIG_CMD_BOOTCHOOSER=y

Setup Barebox Bootchooser

The barebox bootchooser framework allows you to specify a number of redundant boot targets that should be auto-
matically selected by an algorithm, based on status information saved for each boot target.

The bootchooser itself can be used as a Barebox boot target. This is where we start by setting the barebox default boot
target to bootchooser:

nv boot.default="bootchooser"

Now, when Barebox is initialized it starts the bootchooser logic to select its real boot target.

As a next step, we need to tell bootchooser which boot targets it should handle. These boot targets can have descriptive
names which must not equal any of your existing boot targets, we will have a mapping for this later on.

In this example we call the virtual bootchooser boot targets system0 and system1:

nv bootchooser.targets="system0 system1"

Now connect each of these virtual boot targets to a real Barebox boot target (one of its automagical ones or custom
boot scripts):

nv bootchooser.system0.boot="nand0.ubi.system0"
nv bootchooser.system1.boot="nand0.ubi.system1"

To configure bootchooser to store the variables in Barebox state, you need to configure the state_prefix:

6.7. Interfacing with the Bootloader 43

http://www.barebox.org

RAUC Documentation, Release 1.10.1

nv bootchooser.state_prefix="state.bootstate"

Beside this very basic configuration variables, you need to set up a set of other general and slot-specific variables.

Warning: It is highly recommended to read the full Barebox bootchooser documentation in order to know about
the requirements and possibilities in fine-tuning the behavior according to your needs.

Also make sure to have these nv settings in your compiled-in environment, not in your device-local environment.

Setting up Barebox State for Bootchooser

For storing its status information, the bootchooser framework requires a barebox,state instance to be set up with a set
of variables matching the set of virtual boot targets defined.

To allow loading the state information in a well-defined format both from Barebox and from the kernel, we store the
state data format definition in the Barebox devicetree.

Barebox fixups the information into the Linux devicetree when loading the kernel. This assures having a consistent
view on the variables in Barebox and Linux.

An example devicetree node for our simple redundant setup will have the following basic structure

state {
bootstate {
system0 {
...
};
system1 {
...
};

};
};

In the state node, we set the appropriate compatible to tell the barebox,state driver to care for it and define where and
how we want to store our data. This will look similar to this:

state: state {
magic = <0x4d433230>;
compatible = "barebox,state";
backend-type = "raw";
backend = <&state_storage>;
backend-stridesize = <0x40>;
backend-storage-type = "circular";
#address-cells = <1>;
#size-cells = <1>;

[...]
}

where <&state_storage> is a phandle to, e.g. an EEPROM or NAND partition.

Important: The devicetree only defines where and in which format the data will be stored. By default, no data will
be stored in the deviectree itself!

The rest of the variable set definition will be made in the bootstate subnode.

44 Chapter 6. Integration

http://barebox.org/doc/latest/user/bootchooser.html

RAUC Documentation, Release 1.10.1

For each virtual boot target handled by state, two uint32 variables remaining_attempts and priority need to
be defined.:

bootstate {

system0 {
#address-cells = <1>;
#size-cells = <1>;

remaining_attempts@0 {
reg = <0x0 0x4>;
type = "uint32";
default = <3>;

};
priority@4 {

reg = <0x4 0x4>;
type = "uint32";
default = <20>;

};
};

[...]
};

Note: As the example shows, you must also specify some useful default variables the state driver will load in case of
uninitialized backend storage.

Additionally one single variable for storing information about the last chosen boot target is required:

bootstate {

[...]

last_chosen@10 {
reg = <0x10 0x4>;
type = "uint32";

};
};

Warning: This example shows only a highly condensed excerpt of setting up Barebox state for bootchooser. For a
full documentation on how Barebox state works and how to properly integrate it into your platform see the official
Barebox State Framework user documentation as well as the corresponding devicetree binding reference!

You can verify your setup by calling devinfo state from Barebox, which would print this for example:

barebox@board:/ devinfo state
Parameters:
bootstate.last_chosen: 2 (type: uint32)
bootstate.system0.priority: 10 (type: uint32)
bootstate.system0.remaining_attempts: 3 (type: uint32)
bootstate.system1.priority: 20 (type: uint32)
bootstate.system1.remaining_attempts: 3 (type: uint32)
dirty: 0 (type: bool)
save_on_shutdown: 1 (type: bool)

6.7. Interfacing with the Bootloader 45

http://www.barebox.org/doc/latest/user/state.html
http://www.barebox.org/doc/latest/devicetree/bindings/barebox/barebox,state.html

RAUC Documentation, Release 1.10.1

Once you have set up bootchooser properly, you finally need to enable RAUC to interact with it.

Enable Accessing Barebox State for RAUC

For this, you need to specify which (virtual) boot target belongs to which of the RAUC slots you defined. You do this
by assigning the virtual boot target name to the slots bootname property:

[slot.rootfs.0]
...
bootname=system0

[slot.rootfs.1]
...
bootname=system1

For writing the bootchooser’s state variables from userspace, RAUC uses the tool barebox-state from the dt-utils
repository.

Note: RAUC requires dt-utils version v2017.03 or later!

Make sure to have this tool integrated on your target platform. You can verify your setup by calling it manually:

barebox-state -d
bootstate.system0.remaining_attempts=3
bootstate.system0.priority=10
bootstate.system1.remaining_attempts=3
bootstate.system1.priority=20
bootstate.last_chosen=2

Verify Boot Slot Detection

As detecting the currently booted rootfs slot from userspace and matching it to one of the slots defined in RAUC’s
system.conf is not always trivial and error-prone, Barebox provides an explicit information about which slot it
selected for booting adding a bootchooser.active key to the commandline of the kernel it boots. This key has the
virtual bootchooser boot target assigned. In our case, if the bootchooser logic decided to boot system0 the kernel
commandline will contain:

bootchooser.active=system0

RAUC uses this information for detecting the active booted slot (based on the slot’s bootname property).

If the kernel commandline of your booted system contains this line, you have successfully set up bootchooser to boot
your slot:

$ cat /proc/cmdline

6.7.3 U-Boot

To enable handling of redundant booting in U-Boot, manual scripting is required. U-Boot allows storing and modifying
variables in its Environment. Properly configured, the environment can be accessed both from U-Boot itself as well as
from Linux userspace. U-Boot also supports setting up the environment redundantly for atomic modifications.

46 Chapter 6. Integration

https://git.pengutronix.de/cgit/tools/dt-utils/

RAUC Documentation, Release 1.10.1

The default RAUC U-Boot boot selection implementation requires a U-Boot boot script using specific set of variables
that are persisted to the environment as stateful slot selection information.

To enable U-Boot support in RAUC, select it in your system.conf:

[system]
...
bootloader=uboot

Set up U-Boot Boot Script for RAUC

U-Boot as the bootloader needs to decide which slot (partition) to boot. For this decision it needs to read and process
some state information set by RAUC or previous boot attempts.

The U-Boot bootloader interface of RAUC will rely on setting the following U-Boot environment variables:

BOOT_ORDER Contains a space-separated list of boot names in the order they should be tried, e.g. A B.

BOOT_<bootname>_LEFT Contains the number of remaining boot attempts to perform for the respec-
tive slot.

An example U-Boot script for handling redundant A/B boot setups is located in the contrib/ folder of the RAUC
source repository (contrib/uboot.sh).

Note: You must adapt the script’s boot commands to match the requirements of your platform.

You should integrate your boot selection script as boot.scr default boot script into U-Boot.

For this you have to convert it to a U-boot readable default script (boot.scr) first:

mkimage -A arm -T script -C none -n "Boot script" -d <path-to-input-script> boot.scr

If you place this on a partition next to U-Boot, it will use it as its boot script.

For more details, refer the U-Boot Scripting Capabilities chapter in the U-Boot user documentation.

The example script uses the names A and B as the bootname for the two different boot targets. These names need
to be set in your system.conf as the bootname of the respective slots. The resulting boot attempts variables will be
BOOT_A_LEFT and BOOT_B_LEFT. The BOOT_ORDER variable will contain A B if A is the primary slot or B A if
B is the primary slot to boot.

Note: For minor changes in boot logic or variable names simply change the boot script and/or the RAUC sys-
tem.conf bootname settings. If you want to implement a fully different behavior, you might need to modify the
uboot_set_state() and uboot_set_primary() functions in src/bootchooser.c of RAUC.

Setting up the (Fail-Safe) U-Boot Environment

The U-Boot environment is used to store stateful boot selection information and serves as the interface between
userspace and bootloader. The information stored in the environment needs to be preserved, even if the bootloader
should be updated. Thus the environment should be placed outside the bootloader partition!

The storage location for the environment can be controlled with CONFIG_ENV_IS_IN_* U-Boot Kconfig options
like CONFIG_ENV_IS_IN_FAT or CONFIG_ENV_IS_IN_MMC. You may either select a different storage than
your bootloader, or a different location/partition/volume on the same storage.

6.7. Interfacing with the Bootloader 47

https://www.denx.de/wiki/Knowhow/DULG/UBootScripts

RAUC Documentation, Release 1.10.1

For fail-safe (atomic) updates of the environment, U-Boot can use redundant environments that allow to write to one
copy while keeping the other as fallback if writing fails, e.g. due to sudden power cut.

In order to enable redundant environment storage, you have to additionally set in your U-Boot config:

CONFIG_SYS_REDUNDAND_ENVIRONMENT=y
CONFIG_ENV_SIZE=<size-of-env>
CONFIG_ENV_OFFSET=<offset-in-device>
CONFIG_ENV_OFFSET_REDUND=<copy-offset-in-device>

Note: Above switches refer to U-Boot >= v2020.01.

Refer to U-Boot source code and README for more details on this.

Enable Accessing U-Boot Environment from Userspace

To enable reading and writing of the U-Boot environment from Linux userspace, you need to have:

• U-Boot target tools fw_printenv and fw_setenv available on your devices rootfs.

• Environment configuration file /etc/fw_env.config in your target root filesystem.

See the corresponding HowTo section from the U-Boot documentation for more details on how to set up the environ-
ment config file for your device.

Example: Setting up U-Boot Environment on eMMC/SD Card

For this example we assume a simple redundancy boot partition layout with a bootloader partition and two rootfs
partitions.

Another additional partition we use exclusively for storing the environment.

Note: It is not strictly required to have the env on an actual MBR/GPT partition, but we use this here as it better
protects against accidentally overwriting relevant data of other partitions.

Partition table (excerpt with partition offsets):

/dev/mmcblk0p1 StartLBA: 8192 -> u-boot etc.
/dev/mmcblk0p2 StartLBA: 114688 -> u-boot environment
/dev/mmcblk0p3 StartLBA: 139264 -> rootfs A
/dev/mmcblk0p4 StartLBA: 475136 -> rootfs B

We enable redundant environment and storage in MMC (not in vfat/ext4 partition) in the u-boot config:

CONFIG_SYS_REDUNDAND_ENVIRONMENT=y
CONFIG_ENV_IS_IN_MMC=y

The default should be to use mmc device 0 and HW partition 0. Since U-Boot 2020.10.0 we can set this also explicitly
if required:

CONFIG_SYS_MMC_ENV_DEV=0
CONFIG_SYS_MMC_ENV_PART=0

48 Chapter 6. Integration

https://www.denx.de/wiki/Knowhow/DULG/HowCanIAccessUBootEnvironmentVariablesInLinux

RAUC Documentation, Release 1.10.1

Important: With CONFIG_SYS_MMC_ENV_PART we can specify a eMMC HW partition only, not an MBR/GPT
partition! HW partitions are e.g. 0=user data area, 1=boot partition.

Then we must specify the env storage size and its offset relative to the currently used device. Here the device is
the eMMC user data area (or SD Card). For placing the content in partition 2 now, we must calculate the offset as
offset=hex(n sector * 512 bytes/sector). With n=114688 (start of /dev/mmcblk0p2 according to
above partition table) we get an offset of 0x3800000. As size we pick 0x4000 (16kB) here. The offset of the
redundant copy must be the offset of the first copy + size of first copy. This results in:

CONFIG_ENV_SIZE=0x4000
CONFIG_ENV_OFFSET=0x3800000
CONFIG_ENV_OFFSET_REDUND=0x3804000

Finally, we need to configure userspace to access the same location. This can be referenced directly by its partition
device name (/dev/mmcblk0p2) in the /etc/fw_env.config:

/dev/mmcblk0p2 0x0000 0x4000
/dev/mmcblk0p2 0x4000 0x4000

6.7.4 GRUB

[system]
...
bootloader=grub

To enable handling of redundant booting in GRUB, manual scripting is required.

The GRUB bootloader interface of RAUC uses the GRUB environment variables <bootname>_OK,
<bootname>_TRY and ORDER.

An exemplary GRUB configuration for handling redundant boot setups is located in the contrib/ folder of the
RAUC source repository (grub.conf). As the GRUB shell only has limited support for scripting, this example uses
only one try per enabled slot.

To enable reading and writing of the GRUB environment, you need to have the tool grub-editenv available on
your target.

By default RAUC expects the grubenv file to be located at /boot/grub/grubenv, you can specify a custom
directory by passing grubenv=/path/to/grubenv in your system.conf [system] section.

Make sure that the grubenv file is located outside your redundant rootfs partitions as the rootfs needs to be exchange-
able without affecting the environment content. For UEFI systems, a proper location would be to place it on the EFI
partition, e.g. at /EFI/BOOT/grubenv. The same partition can also be used for your grub.cfg (which could be
placed at /EFI/BOOT/grub.cfg).

Note that you then also need to manually tell GRUB where to load the grubenv from. You can do this in your grub.
cfg by a adding the --file argument to your script’s load_env and save_env calls, like:

load_env --file=(hd0,2)/grubenv

save_env --file=(hd0,2)/grubenv A_TRY A_OK B_TRY B_OK ORDER

6.7. Interfacing with the Bootloader 49

RAUC Documentation, Release 1.10.1

6.7.5 EFI

For x86 systems that directly boot via EFI/UEFI, RAUC supports interaction with EFI boot entries by using the
efibootmgr tool. To enable EFI bootloader support in RAUC, write in your system.conf:

[system]
...
bootloader=efi

To set up a system ready for pure EFI-based redundancy boot without any further bootloader or initramfs involved,
you have to create an appropriate partition layout and matching boot EFI entries.

Assuming a simple A/B redundancy, you would need:

• 2 redundant EFI partitions holding an EFI stub kernel (e.g. at EFI/LINUX/BZIMAGE.EFI)

• 2 redundant rootfs partitions

To create boot entries for these, use the efibootmgr tool:

efibootmgr --create --disk /dev/sdaX --part 1 --label "system0" --loader
→˓\\EFI\\LINUX\\BZIMAGE.EFI --unicode "root=PARTUUID=<partuuid-of-part-1>"
efibootmgr --create --disk /dev/sdaX --part 2 --label "system1" --loader
→˓\\EFI\\LINUX\\BZIMAGE.EFI --unicode "root=PARTUUID=<partuuid-of-part-2>"

where you replace /dev/sdaX with the name of the disk you use for redundancy boot, <partuuid-of-part-1>
with the PARTUUID of the first rootfs partition and <partuuid-of-part-2> with the PARTUUID of the second
rootfs partition.

You can inspect and verify your settings by running:

efibootmgr -v

In your system.conf, you have to list both the EFI partitions (each containing one kernel) as well as the rootfs
partitions. Make the first EFI partition a child of the first rootfs partition and the second EFI partition a child of the
second rootfs partition to have valid slot groups. Set the rootfs slot bootnames to those we have defined with the
--label argument in the efibootmgr call above:

[slot.efi.0]
device=/dev/sdX1
type=vfat
parent=rootfs.0

[slot.efi.1]
device=/dev/sdX2
type=vfat
parent=rootfs.1

[slot.rootfs.0]
device=/dev/sdX3
type=ext4
bootname=system0

[slot.rootfs.1]
device=/dev/sdX4
type=ext4
bootname=system1

50 Chapter 6. Integration

RAUC Documentation, Release 1.10.1

6.7.6 Custom

If none of the previously mentioned approaches can be applied on the system, RAUC also offers the possibility to use
customization scripts or applications as bootloader backend.

To enable the custom bootloader backend support in RAUC, select it in your system.conf :

[system]
...
bootloader=custom

Configure custom bootloader backend

The custom bootloader backed based on a handler that is called to get the desired information or set the appropriate
configuration of the custom bootloader environment.

To register the custom bootloader backend handler, assign your handler to the bootloader-custom-backend
key in section handlers in your system.conf :

[handlers]
...
bootloader-custom-backend=custom-bootloader-script

Custom bootloader backend interface

According to Boot Slot Selection the custom bootloader handler is called by RAUC to trigger the following actions:

• get the primary slot

• set the primary slot

• get the boot state

• set the boot state

To get the primary slot, the handler is called with the argument get-primary. The handler must output the current
primary slot’s bootname on the stdout, and return 0 on exit, if no error occurred. In case of failure, the handler must
return with non-zero value. Accordingly, in order to set the primary slot, the custom bootloader handler is called
with argument set-primary <slot.bootname> where <slot.bootname> matches the bootname= key
defined for the respective slot in your system.conf. If the set was successful, the handler must also return with a 0,
otherwise the return value must be non-zero.

In addition to the primary slot, RAUC must also be able to determine the boot state of a specific slot. RAUC deter-
mines the necessary boot state by calling the custom bootloader handler with the argument get-state <slot.
bootname>. Whereupon the handler has to output the state good or bad to stdout and exit with the return value 0.
If the state cannot be determined or another error occurs, the custom bootloader handler must exit with non-zero return
value. To set the boot state to the desire slot, the handler is called with argument set-state <slot.bootname>
<state>. As already mentioned in the paragraph above, the <slot.bootname> matches the bootname= key
defined for the respective slot in your system.conf. The <state> argument corresponds to one of the following
values:

• good if the last start of the slot was successful or

• bad if the last start of the slot failed.

The return value must be 0 if the boot state was set successfully, or non-zero if an error occurred.

6.7. Interfacing with the Bootloader 51

RAUC Documentation, Release 1.10.1

6.8 Init System and Service Startup

There are several ways to run the RAUC service on your target. The recommended way is to use a systemd-based
system and allow to start RAUC via D-Bus activation.

You can start the RAUC service manually by executing:

$ rauc service

Keep in mind that rauc service reads the system.conf during startup and needs to be restarted for changes in the
system.conf to take affect.

6.8.1 Systemd Integration

When building RAUC, a default systemd rauc.service file will be generated in the data/ folder.

Depending on your configuration make install will place this file in one of your system’s service file folders.

It is a good idea to wait for the system to be fully started before marking it as successfully booted. In order to
achieve this, a smart solution is to create a systemd service that calls rauc status mark-good and use systemd’s
dependency handling to assure this service will not be executed before all relevant other services came up successfully.
It could look similar to this:

[Unit]
Description=RAUC Good-marking Service
ConditionKernelCommandLine=|bootchooser.active
ConditionKernelCommandLine=|rauc.slot

[Service]
ExecStart=/usr/bin/rauc status mark-good

[Install]
WantedBy=multi-user.target

6.9 D-Bus Integration

The D-Bus interface RAUC provides makes it easy to integrate it into your customapplication. In order to allow
sending data, make sure the D-Bus config file de.pengutronix.rauc.conf from the data/ dir gets installed
properly.

To only start RAUC when required, using D-Bus activation is a smart solution. In order to enable D-Bus activation,
properly install the D-Bus service file de.pengutronix.rauc.service from the data/ dir.

6.10 Watchdog Configuration

Detecting system hangs during runtime requires to have a watchdog and to have the watchdog configured and handled
properly. Systemd provides a sophisticated watchdog multiplexing and handling allowing you to configure separate
timeouts and handlings for each of your services.

To enable it, you need at least to have these lines in your systemd configuration:

RuntimeWatchdogSec=20
ShutdownWatchdogSec=10min

52 Chapter 6. Integration

RAUC Documentation, Release 1.10.1

6.11 Yocto

Yocto support for using RAUC is provided by the meta-rauc layer.

The layer supports building RAUC both for the target as well as as a host tool. With the bundle.bbclass it provides a
mechanism to specify and build bundles directly with the help of Yocto.

For more information on how to use the layer, also see the layer’s README file.

Note: When using the block-hash-index adaptive mode, you may need to set IMAGE_ROOTFS_ALIGNMENT
= "4" in your machine.conf to ensure that the image is padded to full 4 kiB blocks.

6.11.1 Target System Setup

Add the meta-rauc layer to your setup:

git submodule add git@github.com:rauc/meta-rauc.git

Add the RAUC tool to your image recipe (or package group):

IMAGE_INSTALL_append = "rauc"

Append the RAUC recipe from your BSP layer (referred to as meta-your-bsp in the following) by creating a
meta-your-bsp/recipes-core/rauc/rauc_%.bbappend with the following content:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

Write a system.conf for your board and place it in the folder you mentioned in the recipe (meta-your-bsp/recipes-
core/rauc/files). This file must provide a system compatible string to identify your system type, as well as a definition
of all slots in your system. By default, the system configuration will be placed in /etc/rauc/system.conf on your target
rootfs.

Also place the appropriate keyring file for your target into the directory added to FILESEXTRAPATHS above. Name
it either ca.cert.pem or additionally specify the name of your custom file by setting RAUC_KEYRING_FILE. If
multiple keyring certificates are required on a single system, create a keyring directory containing each certificate.

Note: For information on how to create a testing / development key/cert/keyring, please refer to scripts/README in
meta-rauc.

For a reference of allowed configuration options in system.conf, see System Configuration File. For a more detailed
instruction on how to write a system.conf, see Partitioning Your Device.

6.11.2 Using RAUC on the Host System

The RAUC recipe allows to compile and use RAUC on your host system. Having RAUC available as a host tool is
useful for debugging, testing or for creating bundles manually. For the preferred way of creating bundles automatically,
see the chapter Bundle Generation. In order to compile RAUC for your host system, simply run:

bitbake rauc-native

This will place a copy of the RAUC binary in tmp/deploy/tools in your current build folder. To test it, try:

6.11. Yocto 53

https://github.com/rauc/meta-rauc
https://github.com/rauc/meta-rauc/blob/master/classes/bundle.bbclass
https://github.com/rauc/meta-rauc/blob/master/README.rst
https://github.com/rauc/meta-rauc/blob/master/scripts/README

RAUC Documentation, Release 1.10.1

tmp/deploy/tools/rauc --version

6.11.3 Bundle Generation

Bundles can be created either manually by building and using RAUC as a native tool, or by using the bundle.
bbclass that handles most of the basic steps, automatically.

First, create a bundle recipe in your BSP layer. A possible location for this could be meta-your-bsp/
recipes-core/bundles/update-bundle.bb.

To create your bundle you first have to inherit the bundle class:

inherit bundle

To create the manifest file, you may either use the built-in class mechanism, or provide a custom manifest.

For using the built-in bundle generation, you need to specify some variables:

RAUC_BUNDLE_COMPATIBLE Sets the compatible string for the bundle. This should match the compatible you
specified in your system.conf or, more generally, the compatible of the target platform you intend to install
this bundle on.

RAUC_BUNDLE_SLOTS Use this to list all slot classes for which the bundle should contain images. A value of
"rootfs appfs" for example will create a manifest with images for two slot classes; rootfs and appfs.

RAUC_BUNDLE_FORMAT Use this to choose the Bundle Formats for the generated bundle. It currently defaults to
plain, but you should use verity if possible.

RAUC_SLOT_<slotclass> For each slot class, set this to the image (recipe) name which builds the artifact you
intend to place in the slot class.

RAUC_SLOT_<slotclass>[type] For each slot class, set this to the type of image you intend to place in this
slot. Possible types are: image (default), kernel, boot, or file.

Note: For a full list of supported variables, refer to classes/bundle.bbclass in meta-rauc.

A minimal bundle recipe, such as core-bundle-minimal.bb that is contained in meta-rauc will look as follows:

inherit bundle

RAUC_BUNDLE_COMPATIBLE ?= "Demo Board"

RAUC_BUNDLE_SLOTS ?= "rootfs"

RAUC_BUNDLE_FORMAT ?= "verity"

RAUC_SLOT_rootfs ?= "core-image-minimal"

To be able to build a signed image of this, you also need to configure RAUC_KEY_FILE and RAUC_CERT_FILE to
point to your key and certificate files you intend to use for signing. You may set them either from your bundle recipe
or any global configuration (layer, site.conf, etc.), e.g.:

RAUC_KEY_FILE = "${COREBASE}/meta-<layername>/files/development-1.key.pem"
RAUC_CERT_FILE = "${COREBASE}/meta-<layername>/files/development-1.cert.pem"

54 Chapter 6. Integration

RAUC Documentation, Release 1.10.1

Note: For information on how to create a testing / development key/cert/keyring, please refer to scripts/README in
meta-rauc.

Based on this information, a call of:

bitbake core-bundle-minimal

will build all required images and generate a signed RAUC bundle from this. The created bundle can be found in
${DEPLOY_DIR_IMAGE} (defaults to tmp/deploy/images/<machine> in your build directory).

6.12 PTXdist

Note: RAUC support in PTXdist is available since version 2017.04.0.

6.12.1 Integration into Your RootFS Build

To enable building RAUC for your target, set:

CONFIG_RAUC=y

in your ptxconfig (by selecting RAUC via ptxdist menuconfig).

You should also customize the compatible RAUC uses for your system. To do this, set
PTXCONF_RAUC_COMPATIBLE to a string that uniquely identifies your device type. The default value will
be "${PTXCONF_PROJECT_VENDOR}\ ${PTXCONF_PROJECT}".

Place your system configuration file in $(PTXDIST_PLATFORMCONFIGDIR)/projectroot/etc/rauc/
system.conf to let the RAUC package install it into the rootfs you build.

Note: PTXdist versions since 2020.06.0 use their code signing infrastructure for keyring creation. See PTXdist’s
Managing Certificate Authority Keyrings for different scenarios (refer to RAUC’s CA Configuration). Previous
PTXdist versions expected the keyring in $(PTXDIST_PLATFORMCONFIGDIR)/projectroot/etc/rauc/
ca.cert.pem. The keyring is installed into the rootfs to /etc/rauc/ca.cert.pem.

If using systemd, the recipes install both the default systemd.service file for RAUC as well as a
rauc-mark-good.service file. This additional good-marking-service runs after user space is brought up and
notifies the underlying bootloader implementation about a successful boot of the system. This is typically used in
conjunction with a boot attempts counter in the bootloader that is decremented before starting the system and reset by
rauc status mark-good to indicate a successful system startup.

6.12.2 Create Update Bundles from your RootFS

To enable building RAUC bundles, set:

CONFIG_IMAGE_RAUC=y

6.12. PTXdist 55

https://www.ptxdist.org/doc/dev_code_signing.html
https://www.ptxdist.org/doc/dev_code_signing.html#managing-certificate-authority-keyrings

RAUC Documentation, Release 1.10.1

in your platformconfig (by using ptxdist platformconfig).

This adds a default image recipe for building a RAUC update bundle out of the system’s rootfs. As for most image
recipes, the genimage <genimage_> tool is used to configure and generate the update bundle.

PTXdist’s default bundle configuration is placed in config/images/rauc.config. You may also copy this to your platform
directory to use this as a base for custom bundle configuration.

RAUC enforces signing of update bundles. PTXdist versions since 2020.06.0 use its code sign-
ing infrastructure for signing and keyring verification. Previous versions expected the signing key in
$(PTXDIST_PLATFORMCONFIGDIR)/config/rauc/rauc.key.pem.

Once you are done with your setup, PTXdist will automatically create a RAUC update bundle for you during the run
of ptxdist images. It will be placed under $(PTXDIST_PLATFORMDIR)/images/update.raucb.

6.13 Buildroot

Note: RAUC support in Buildroot is available since version 2017.08.0.

To build RAUC using Buildroot, enable BR2_PACKAGE_RAUC in your configuration.

6.14 Package-Based Distributions

Some non-embedded-focused distributions provide RAUC packages. An overview can be found on Repology.

Note that some distributions split the service configuration in a separate rauc-service package, as the common
use of RAUC on these distributions is to create and inspect bundles, for which the D-Bus service is not required.

• Alpine

– https://pkgs.alpinelinux.org/packages?name=rauc

• Arch

– https://archlinux.org/packages/extra/x86_64/rauc/

• Debian

– https://packages.debian.org/search?searchon=sourcenames&keywords=rauc

– https://tracker.debian.org/pkg/rauc

• Nix

– https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/misc/rauc/default.nix

• Ubuntu

– https://packages.ubuntu.com/search?keywords=rauc&searchon=sourcenames

6.15 Bundle Format Migration

Migrating from the plain to the verity bundle format should be simple in most cases and can be done in a single update.
The high-level functionality of RAUC (certificate checking, update installation, hooks/handlers, . . .) is independent
of the low-level bundle format.

56 Chapter 6. Integration

https://www.ptxdist.org/doc/dev_code_signing.html
https://www.ptxdist.org/doc/dev_code_signing.html
https://repology.org/project/rauc/versions
https://pkgs.alpinelinux.org/packages?name=rauc
https://archlinux.org/packages/extra/x86_64/rauc/
https://packages.debian.org/search?searchon=sourcenames&keywords=rauc
https://tracker.debian.org/pkg/rauc
https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/misc/rauc/default.nix
https://packages.ubuntu.com/search?keywords=rauc&searchon=sourcenames

RAUC Documentation, Release 1.10.1

The required steps are:

• Configure your build system to build RAUC v1.5 (or newer).

• Enable CONFIG_CRYPTO_SHA256, CONFIG_MD, CONFIG_BLK_DEV_DM and CONFIG_DM_VERITY in
your kernel configuration. These may already be enabled if you are using dm-verity for verified boot.

• Add a new bundle output configured for the verity format by adding the following to the manifest:

[bundle]
format=verity

Note: For OE/Yocto with an up-to-date meta-rauc, you can choose the bundle format by adding the
RAUC_BUNDLE_FORMAT = "verity" option in your bundle recipe. The bundle.bbclass will insert the neces-
sary option into the manifest.

For PTXdist or Buildroot with genimage, you can add the manifest option above to the template in your genimage
config file.

With these changes, the build system should produce two bundles (one in either format). A verity bundle will only
be installable on systems that have already received the migration update. A plain bundle will be installable on both
migrated and unmigrated systems.

You should then test that both bundle formats can be installed on a migrated system, as RAUC will now perform
additional checks when installing a plain bundle to protect against potential modification during installation. This
testing should include all bundle sources (USB, network, . . .) that you will need in the field to ensure that these new
checks don’t trigger in your case (which would prohibit further updates).

Note: When installing bundles from a FAT filesystem (for example on a USB memory stick), check that the mount
option fmask is set to 0022 or 0133.

When you no longer need to be able to install previously built bundles in the plain format, you should also disable it
in the system.conf:

[system]
...
bundle-formats=-plain
...

If you later need to support downgrades, you can use rauc extract and rauc bundle to convert a plain bundle
to a verity bundle, allowing installation to systems that have already been migrated.

6.15. Bundle Format Migration 57

RAUC Documentation, Release 1.10.1

58 Chapter 6. Integration

CHAPTER 7

Advanced Topics

• Security

– CA Configuration

– Single Key

– Simple CA

– Separate Development and Release CAs

– Intermediate Certificates

– Passphrase Handling

– Resigning Bundles

– PKCS#11 Support

– Protection Against Concurrent Bundle Modification

• HTTP Streaming

– Authentication

– Performance

• Bundle Encryption

– Encryption Key Workflows

– Scalability

• Data Storage and Migration

– Storing Data in The Root File System

– Using Data Partitions

– Application Data Migration

59

RAUC Documentation, Release 1.10.1

• Adaptive Updates

– Block-based Adaptive Update (block-hash-index)

• RAUC casync Support

– casync vs. RAUC Built-in Streaming & Adaptive Updates

– Creating casync Bundles

– Installing casync Bundles

• Handling Board Variants With a Single Bundle

• Manually Writing Images to Slots

• Updating the Bootloader

– Update Bootloader in eMMC Boot Partitions

– Update Bootloader Partition in MBR

– Update Bootloader Partition in GPT

– Update Raw Bootloader Partition with Fallback

– Bootloader Update Ideas

– Considerations When Updating the Bootloader

• Updating Sub-Devices

• Migrating to an Updated Bundle Version

• Software Deployment

– Deployment via Storage Media

– Deployment via Deployment Server

7.1 Security

The RAUC bundle format consists of the images and a manifest, contained in a SquashFS image. The SquashFS is
followed by a public key signature over the full image. The signature is stored (together with the signer’s certificate) in
the CMS (Cryptographic Message Syntax, see RFC5652) format. Before installation, the signer certificate is verified
against the keyring(s) already stored on the system and the signer’s public key is then used to verify the bundle
signature.

We selected the CMS to avoid designing and implementing our own custom security mechanism (which often results in
vulnerabilities). CMS is well proven in S/MIME and has widely available implementations, while supporting simple
as well as complex PKI use-cases (certificate expiry, intermediate CAs, revocation, algorithm selection, hardware
security modules. . .) without additional complexity in RAUC itself.

RAUC uses OpenSSL as a library for signing and verification of bundles. A PKI with intermediate CAs for the unit
tests is generated by the test/openssl-ca-create.sh shell script available from GitHub, which may also be
useful as an example for creating your own PKI.

In the following sections, general CA configuration, some use-cases and corresponding PKI setups are described.

60 Chapter 7. Advanced Topics

https://tools.ietf.org/html/rfc5652
https://www.openssl.org/
https://github.com/rauc/rauc/blob/master/test/openssl-ca-create.sh

RAUC Documentation, Release 1.10.1

7.1.1 CA Configuration

OpenSSL uses an openssl.cnf file to define paths to use for signing, default parameters for certificates and ad-
ditional parameters to be stored during signing. Configuring a CA correctly (and securely) is a complex topic and
obviously exceeds the scope of this documentation. As a starting point, the OpenSSL manual pages (especially ca,
req, x509, cms, verify and config) and Stefan H. Holek’s pki-tutorial are useful.

Certificate Key Usage Attributes

By default (for backwards compatibility reasons), RAUC does not check the certificate’s key usage attributes. When
not using a stand-alone PKI for RAUC, it can be useful to enable checking via the check-purpose configuration
option to allow only specific certificates for bundle installation.

When using OpenSSL to create your certificates, the key usage attributes can be configured in the X.509 V3 extension
sections in your OpenSSL configuration file. The extension configuration section to be used by openssl ca is se-
lected via the -extensions argument. For example, RAUC uses a certificate created with the following extensions
to test the handling of the codeSigning extended key usage attribute:

[v3_leaf_codesign]
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer:always
basicConstraints = CA:FALSE
extendedKeyUsage=critical,codeSigning

As OpenSSL does not (yet) provide a purpose check for code signing, RAUC contains its own implementation, which
can be enabled with the check-purpose=codesign configuration option. For the leaf (signer) certificate, the extended-
KeyUsage attribute must exist and contain (at least) the codeSigning value. Also, if it has the keyUsage attribute, it
must contain at least digitalSignature. For all other (issuer) certificates in the chain, the extendedKeyUsage attribute is
optional, but if it is present, it must contain at least the codeSigning value.

This means that only signatures using certificates explicitly issued for code signing are accepted for the codesign
purpose. Also, you can optionally use extendedKeyUsage attributes on intermediate CA certificates to limit which
ones are allowed to issue code signing certificates.

7.1.2 Single Key

You can use openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days
365 -nodes to create a key and a self-signed certificate. While you can use RAUC with these, you can’t:

• replace expired certificates without updating the keyring

• distinguish between development versions and releases

• revoke a compromised key

7.1.3 Simple CA

By using the (self-signed) root CA only for signing other keys, which are used for bundle signing, you can:

• create one key per developer, with limited validity periods

• revoke keys and ship the CRL (Certificate Revocation List) with an update

With this setup, you can reduce the impact of a compromised developer key.

7.1. Security 61

https://www.openssl.org/docs/man1.1.1/man1/ca.html
https://www.openssl.org/docs/man1.1.1/man1/req.html
https://www.openssl.org/docs/man1.1.1/man1/x509.html
https://www.openssl.org/docs/man1.1.1/man1/cms.html
https://www.openssl.org/docs/man1.1.1/man1/verify.html
https://www.openssl.org/docs/man1.1.1/man5/config.html
https://pki-tutorial.readthedocs.io/
https://www.openssl.org/docs/man1.1.1/man5/x509v3_config.html
https://www.openssl.org/docs/man1.1.1/man5/x509v3_config.html

RAUC Documentation, Release 1.10.1

7.1.4 Separate Development and Release CAs

By creating a complete separate CA and bundle signing keys, you can give only specific persons (or roles) the keys
necessary to sign final releases. Each device only has one of the two CAs in its keyring, allowing only installation of
the corresponding updates.

While using signing also during development may seem unnecessary, the additional testing of the whole update system
(RAUC, bootloader, migration code, . . .) allows finding problems much earlier.

7.1.5 Intermediate Certificates

RAUC allows you to include intermediate certificates in the bundle signature that can be used to close the trust chain
during bundle signature verification.

To do this, specify the --intermediate argument during bundle creation:

rauc bundle --intermediate=/path/to/intermediate.ca.pem [...]

Note that you can specify the --intermediate argument multiple times to include multiple intermediate certifi-
cates to your bundle signature.

7.1.6 Passphrase Handling

If the signing key is protected by a passphrase it has to be entered during signing operations. For automation purposes
the passphrase can be set using the environment variable RAUC_KEY_PASSPHRASE.

Note: Since the environment of other processes is visible on Linux, this option should be used with caution.

7.1.7 Resigning Bundles

RAUC allows to replace the signature of a bundle. A typical use case for this is if a bundle that was generated by an
autobuilder and signed with a development certificate was tested successfully on your target and should now become a
release bundle. For this it needs to be resigned with the release key without modifying the content of the bundle itself.

This is what the resign command of RAUC is for:

rauc resign --cert=<certfile> --key=<keyfile> --keyring=<keyring> <input-bundle>
→˓<output-bundle>

It verifies the bundle against the given keyring, strips the old signature and attaches a new one based on the key and cert
files provided. If the old signature is no longer valid, you can use the --no-verify argument to disable verification.

Switching the Keyring – SPKI hashes

When switching from a development to a release signature, it is typically required to also equip the rootfs with a
different keyring file.

While the development system should accept both development and release certificates, the release system should
accept only release certificates.

One option to perform this exchange without having to build a new rootfs would be to include both a keyring for the
development case as well as a keyring for the release case.

62 Chapter 7. Advanced Topics

RAUC Documentation, Release 1.10.1

Doing this would be possible in a slot’s post-install hook, for example. Depending on whether the bundle to install
was signed with a development or a release certificate, either the production or development keyring will be copied to
the location where RAUC expects it to be.

To allow comparing hashes, RAUC generates SPKI hashes (i.e. hashes over the entire public key information of a
certificate) out of each signature contained in the bundle’s trust chain. The SPKI hashes are invariant over changes in
signature meta data (such as the validity dates) while allowing to securely compare the certificate ownership.

A simple call of rauc info will list the SPKI hashes for each certificate contained in the validated trust chain:

Certificate Chain:
0 Subject: /O=Test Org/CN=Test Org Release-1
Issuer: /O=Test Org/CN=Test Org Provisioning CA Release
SPKI sha256:

→˓94:67:AB:31:08:04:3D:2D:62:D5:EE:58:D6:2F:86:7A:F2:77:94:29:9B:46:11:00:EC:D4:7B:1B:1D:42:8E:5A
1 Subject: /O=Test Org/CN=Test Org Provisioning CA Release
Issuer: /O=Test Org/CN=Test Org Provisioning CA Root
SPKI sha256:

→˓47:D4:9D:73:9B:11:FB:FD:AB:79:2A:07:36:B7:EF:89:3F:34:5F:D4:9B:F3:55:0F:C1:04:E7:CC:2F:32:DB:11
2 Subject: /O=Test Org/CN=Test Org Provisioning CA Root
Issuer: /O=Test Org/CN=Test Org Provisioning CA Root
SPKI sha256:

→˓00:34:F8:FE:5A:DC:3B:0D:FE:64:24:07:27:5D:14:4D:E2:39:8C:68:CC:9A:86:DD:67:03:D7:15:11:16:B4:4E

A post-install hook instead can access the SPKI hashes via the environment variable RAUC_BUNDLE_SPKI_HASHES
that will be set by RAUC when invoking the hook script. This variable will contain a space-separated list of the hashes
in the same order they are listed in rauc info. This list can be used to define a condition in the hook for either
installing one or the other keyring file on the target.

Example hook shell script code for above trust chain:

case "$1" in

[...]

slot-post-install)

[...]

iterate over trust chain SPKI hashes (from leaf to root)
for i in $RAUC_BUNDLE_SPKI_HASHES; do

Test for development intermediate certificate
if ["$i" ==

→˓"46:9E:16:E2:DC:1E:09:F8:5B:7F:71:D5:DF:D0:A4:91:7F:FE:AD:24:7B:47:E4:37:BF:76:21:3A:38:49:89:5B
→˓"]; then

echo "Activating development key chain"
mv "$RAUC_SLOT_MOUNT_POINT/etc/rauc/devel-keyring.pem" "

→˓$RAUC_SLOT_MOUNT_POINT/etc/rauc/keyring.pem"
break

fi
Test for release intermediate certificate
if ["$i" ==

→˓"47:D4:9D:73:9B:11:FB:FD:AB:79:2A:07:36:B7:EF:89:3F:34:5F:D4:9B:F3:55:0F:C1:04:E7:CC:2F:32:DB:11
→˓"]; then

echo "Activating release key chain"
mv "$RAUC_SLOT_MOUNT_POINT/etc/rauc/release-keyring.pem

→˓" "$RAUC_SLOT_MOUNT_POINT/etc/rauc/keyring.pem"
break

(continues on next page)

7.1. Security 63

RAUC Documentation, Release 1.10.1

(continued from previous page)

fi
done
;;

[...]
esac

7.1.8 PKCS#11 Support

RAUC can use certificates and keys which are stored in a PKCS#11-supporting smart-card, USB token (such as a
YubiKey) or Hardware Security Module (HSM). For all commands which need create a signature bundle, convert
and resign, PKCS#11 URLs can be used instead of filenames for the --cert and --key arguments.

For example, a bundle can be signed with a certificate and key available as pkcs11:token=rauc;
object=autobuilder-1:

rauc bundle \
--cert='pkcs11:token=rauc;object=autobuilder-1' \
--key='pkcs11:token=rauc;object=autobuilder-1' \
<input-dir> <output-file>

Note: Most PKCS#11 implementations require a PIN for signing operations. You can either enter the PIN interac-
tively as requested by RAUC or use the RAUC_PKCS11_PIN environment variable to specify the PIN to use.

When working with PKCS#11, some tools are useful to configure and show your tokens:

p11-kit p11-kit is an abstraction layer which provides access to multiple PKCS#11 modules.

GnuTLS GnuTLS is a library implementing TLS and related functionality. It contains p11tool, which is useful to
see available tokens and objects (keys and certificates) and their URLs:

$ p11tool --list-tokens
...
Token 5:

URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;
→˓serial=9f03d1aaed92ef58;token=rauc

Label: rauc
Type: Generic token
Manufacturer: SoftHSM project
Model: SoftHSM v2
Serial: 9f03d1aaed92ef58
Module: /usr/lib/softhsm/libsofthsm2.so

$ p11tool --login --list-all pkcs11:token=rauc
Token 'rauc' with URL 'pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;
→˓serial=9f03d1aaed92ef58;token=rauc' requires user PIN
Enter PIN: ****
Object 0:

URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;
→˓serial=9f03d1aaed92ef58;token=rauc;id=%01;object=autobuilder-1;type=public

Type: Public key
Label: autobuilder-1
Flags: CKA_WRAP/UNWRAP;
ID: 01

(continues on next page)

64 Chapter 7. Advanced Topics

https://www.yubico.com
https://tools.ietf.org/html/rfc7512
https://github.com/p11-glue/p11-kit
https://gitlab.com/gnutls/gnutls

RAUC Documentation, Release 1.10.1

(continued from previous page)

Object 1:
URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;

→˓serial=9f03d1aaed92ef58;token=rauc;id=%01;object=autobuilder-1;type=private
Type: Private key
Label: autobuilder-1
Flags: CKA_WRAP/UNWRAP; CKA_PRIVATE; CKA_SENSITIVE;
ID: 01

Object 2:
URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;

→˓serial=9f03d1aaed92ef58;token=rauc;id=%01;object=autobuilder-1;type=cert
Type: X.509 Certificate
Label: autobuilder-1
ID: 01

More details are available in the GnuTLS manual.

OpenSC OpenSC is the standard open source framework for smart card access.

It provides pkcs11-tool, which is useful to prepare a token for usage with RAUC. It can list, read/write
objects, generate key pairs and more.

libp11 libp11 is an engine plugin for OpenSSL, which allows using keys on PKCS#11 tokens with OpenSSL.

It will automatically use p11-kit (if available) to access all configured PKCS#11 modules.

Note: If you cannot use p11-kit, you can also use the RAUC_PKCS11_MODULE environment variable to select
the PKCS#11 module.

SoftHSM2 SoftHSM2 is software implementation of a HSM with a PKCS#11 interface.

It is used in the RAUC test suite to emulate a real HSM and can also be used to try the PKCS#11 functionality
in RAUC without any hardware. The prepare_softhsm2 shell function in test/rauc.t can be used as
an example on how to initialize SoftHSM2 token.

aws-kms-pkcs11 aws-kms-pkcs11 is a PKCS#11 which uses the AWS KMS as its backend.

This allows using keys managed in AWS KMS for signing RAUC bundles: RAUC_PKCS11_MODULE=/
usr/lib/x86_64-linux-gnu/pkcs11/aws_kms_pkcs11.so rauc bundle
--cert=<certificate pem> --key='pkcs11:' <input-dir> <output-bundle>

7.1.9 Protection Against Concurrent Bundle Modification

As the plain bundle format consists of a squashfs image with an appended CMS signature, RAUC must check the
signature before accessing the squashfs. If an unprivileged process can manipulate the squashfs part of the bundle
after the signature has been checked, it could use this to elevate its privileges.

The verity format is not affected by this problem, as the kernel checks the squashfs data as it is read.

To mitigate this problem when using the plain format, RAUC will check the bundle file for possible issues before
accessing the squashfs:

• ownership or permissions that would allow other users to open it for writing

• storage on unsafe filesystems such as FUSE or NFS, where the data is supplied by an untrusted source (the
rootfs is explicitly trusted, though)

• storage on a filesystem mounted from a block device with a non-root owner

7.1. Security 65

https://www.gnutls.org/manual/html_node/p11tool-Invocation.html
https://github.com/OpenSC/OpenSC
https://github.com/OpenSC/libp11
https://github.com/opendnssec/SoftHSMv2
https://github.com/JackOfMostTrades/aws-kms-pkcs11

RAUC Documentation, Release 1.10.1

• existing open file descriptors (via F_SETLEASE)

If the check fails, RAUC will attempt to take ownership of the bundle file and removes write permissions. This protects
against processes trying to open writable file descriptors from this point on. Then, the checks above a repeated before
setting up the loopback device and mounting the squashfs. If this second check fails, RAUC will abort the installation.

If RAUC had to take ownership of the bundle, this change is not reverted after the installation is completed. Note that,
if the original user has write access to the containing directory, they can still delete the file.

7.2 HTTP Streaming

RAUC supports installing bundles directly from a HTTP(S) server, without having to download and store the bundle
locally. Streaming works with the sub-commands install, info and mount as well as with the DBus API.

To use streaming, some prerequisites need to be fulfilled:

• make sure RAUC is built with -Dstreaming=true/--enable-streaming (which is the default)

• create bundles using the verity format

• host the bundle on a server which supports HTTP Range Requests

• enable NBD (network block device) support in the kernel

Some options can be configured in the [streaming] section in RAUC’s system.conf.

RAUC’s streaming support works by creating a NBD device (instead of the loopback device used for local bundles)
and an unprivileged helper process to convert the NBD read requests to HTTP Range Requests. By using the curl
library, streaming supports:

• HTTP versions 1.1 and 2

• Basic Authentication (user:password@...)

• HTTPS (optionally with client certificates, either file- or PKCS#11-based)

• custom HTTP headers (i.e. for bearer tokens)

When using TLS client certificates, you need to ensure that the key (or PKCS#11 token) is accessible to the streaming
sandbox user.

You can configure a proxy by setting the http_proxy/https_proxy (lower case only) environment variables,
which are handled by curl directly.

7.2.1 Authentication

To use Basic Authentication, you can add the username and password to the bundle URL (rauc install https/
/user:password@example.com/update.raucb).

To pass HTTP headers for authentication, use the --http-header='HEADER: VALUE' option of rauc
install or set them via the http-headers options of the D-Bus InstallBundle method. This could be used
for session cookies, bearer tokens or any custom headers.

For HTTPS client certificates, use the --tls-cert/key=PEMFILE|PKCS11-URL options of rauc install
or the tls-cert/key options of the D-Bus InstallBundle method.

If you need to temporarily disable verification of the server certificate, you can use --tls-no-verify.

66 Chapter 7. Advanced Topics

https://curl.se/libcurl/
https://curl.se/libcurl/
https://everything.curl.dev/usingcurl/proxies#http_proxy-in-lower-case-only
https://everything.curl.dev/usingcurl/proxies#proxy-environment-variables

RAUC Documentation, Release 1.10.1

7.2.2 Performance

As a rough guide, with a relatively fast network, streaming installation is about as fast as downloading and then
installing. For example, when installing a 190MiB bundle on a STM32MP1 SoC (dual ARM Cortex-A7) with an
eMMC, streaming took 1m43s, while downloading followed by local installation took 1m42s (13s+1m29s).

As each chunk of compressed data is only requested when needed by the installation processes, you should expect that
network connections with higher round-trip-time (RTT) lead to longer installation times. This can be compensated
somewhat by using a HTTP/2 server, as this supports multiplexing and better connection reuse.

7.3 Bundle Encryption

RAUC supports encrypting the bundle to one or more recipients (public keys).

The implementation of the crypt bundle format is based on the verity bundle format (which uses Linux’s dm-verity
module). It works by symmetrically encrypting the bundle payload and using Linux’s dm-crypt module to decrypt this
on-demand. The symmetric encryption key is contained in the manifest, which itself is (asymmetrically) encrypted to
a set of recipients. Similar to the verity format, the crypt format can also be used with HTTP streaming.

To use encryption, some prerequisites need to be fulfilled:

• create bundle using the crypt format

• enable dm-crypt support in the target’s kernel

• have private key accessible on the target via path or PKCS#11-URI

Creating an encrypted bundle has two main steps:

• encrypting the payload with rauc bundle using a manifest configured for the crypt format

• encrypting the manifest with the payload encryption key for specific recipients with rauc encrypt

We’ve separated these steps to support more flexibility regarding decryption keys. Some possible workflows are
described in Encryption Key Workflows.

The first step can be performed by a build system, very similar to how un-encrypted bundles are created. RAUC
generates a random key for symmetric AES-256 encryption of the bundle payload (the SquashFS). The encrypted
payload is then protected against modification with dm-verity (see the verity format for details). The AES key is
stored (as plain text) in the signed manifest.

The second step needs to be performed before publishing the bundle. You need to provide (one or more) recipient
certificates, which are used to encrypt the signed manifest. The already encrypted payload is reused unmodified. Any
of the corresponding private keys can then be used by RAUC to first decrypt the manifest, which then contains the key
needed to decrypt the (SquashFS) payload.

Note: To encrypt for a larger number of recipients, the recipient certificates can be concatenated and provided as a
single file in the --to argument.

Also note that the certificates used for encryption don’t need to be part of the signing PKI.

To inspect an encrypted bundle on your build host, you need to provide the encryption key via the --key argument:

$ rauc info --key=/path/to/private-key.pem --keyring=/path/to/keyring.pem encrypted-
→˓crypt-bundle.raucb
Compatible: 'Example Target'
Version: '2022.03-2'

(continues on next page)

7.3. Bundle Encryption 67

RAUC Documentation, Release 1.10.1

(continued from previous page)

Description: '(null)'
Build: '(null)'
Hooks: ''
Bundle Format: crypt [encrypted CMS]

Crypt Key: '<hidden>'
Verity Salt: '18bfbba9f129f97b6bca4aa0645db61feac2511fa940f8169c659601849de38a'
Verity Hash: '505d1d57bf9b280b88b023fb74d6a847c2fb419d70609b91460d5e42c465b6dd'
Verity Size: 4096
[...]

Before installing an encrypted RAUC Bundle on the target, you need to configure the location of the target’s private
key in the system.conf:

[system]
compatible=Example Target

[encryption]
key=pkcs11:token=rauc;object=private-key-1

The installation command then does not differ from the installation of an unencrypted bundle:

rauc install encrypted-bundle.raucb

7.3.1 Encryption Key Workflows

Shared Key

All devices share a single key pair, perhaps store in the initial image installed in the factory.

While a single key shared across all devices is simple to manage, it’s usually not feasible to revoke or replace in case
it is compromised. This means that an attacker requires access to only a single device to be able to decrypt any further
updates.

Note that this does not allow the attacker to bypass the bundle authentication.

Group Key

In this case, a group of devices (perhaps a production batch or for a single customer) shares one key-pair. Depending
on the circumstances and impact, it might be easier to revoke or replace it in case it is compromised, at least compared
to the shared key approach.

Unique Per-Device Key

Each device has its own key, possibly protected using a TPM, HSM or TEE. These keys could be generated on the
device in the factory and the corresponding public key stored in some device database.

In some scenarios, devices already have a unique key (and certificate) for access to a server or VPN. Depending on
how these keys are configured, it may be possible to reuse them for bundle encryption as well.

If any device key is compromised, it can be revoked and removed from the set of recipients for the next update.
Accordingly, only the single compromised device will no longer be able to decrypt updates.

68 Chapter 7. Advanced Topics

RAUC Documentation, Release 1.10.1

7.3.2 Scalability

For each recipient specified to rauc encrypt, the bundle size will increase by a small amount (actual sizes depend
on certificate metadata):

• RSA 4096: ~620 bytes

• ECC: ~250 bytes

With very large numbers of keys, this would result in bundles where the encryption overhead becomes problematic.

To mitigate this issue, the set of keys can be split into multiple subsets, where the same bundle is encrypted once
per subset. Then, depending on how each device’s key is assigned to a subset, it would need to be provided with the
corresponding encrypted bundle.

As the encrypted payload is still the identical for each subset’s bundle and only the encrypted CMS structure (contain-
ing the signed manifest) differs, the payload needs to be stored only once. If needed, this could be implemented in a
web application or using a reflink-capable Linux filesystem.

7.4 Data Storage and Migration

Most systems require a location for storing configuration data such as passwords, ssh keys or application data. When
performing an update, you have to ensure that the updated system takes over or can access the data of the old system.

7.4.1 Storing Data in The Root File System

In case of a writable root file system, it often contains additional data, for example cryptographic material specific to
the machine, or configuration files modified by the user. When performing the update, you have to ensure that the files
you need to preserve are copied to the target slot after having written the system data to it.

RAUC provides support for executing hooks from different slot installation stages. For migrating data from your old
rootfs to your updated rootfs, simply specify a slot post-install hook. Read the Hooks chapter on how to create one.

7.4.2 Using Data Partitions

Often, there are a couple of reasons why you don’t want to or cannot store your data inside the root file system:

• You want to keep your rootfs read-only to reduce probability of corrupting it.

• You have a non-writable rootfs such as SquashFS.

• You want to keep your data separated from the rootfs to ease setup, reset or recovery.

In this case you need a separate storage location for your data on a different partition, volume or device.

If the update concept uses full redundant root file systems, there are also good reasons for using a redundant data
storage, too. Read below about the possible impact on data migration.

To let your system access the separate storage location, it has to be mounted into your rootfs. Note that if you intend
to store configurable system information on your data partition, you have to map the default Linux paths (such as
/etc/passwd) to your data storage. You can do this by using:

• symbolic links

• bind mounts

• an overlay file system

It depends on the amount and type of data you want to handle which option you should choose.

7.4. Data Storage and Migration 69

RAUC Documentation, Release 1.10.1

7.4.3 Application Data Migration

Both a single and a redundant data storage have their advantages and disadvantages. Note when storing data inside
your rootfs you will have a redundant setup by design and cannot choose.

The decision about how to set up a configuration storage and how to handle it depends on several aspects:

• May configuration formats change over different application versions?

• Can a new application read (and convert) old data?

• Does your infrastructure allow working on possibly obsolete data?

• Enough storage to store data redundantly?

• . . .

The basic advantages and disadvantages a single or a redundant setup implicate are listed below:

Single Data Redundant Data
Setup easy assure using correct one
Migration no backup by default copy on update, migrate
Fallback tricky (reconvert data?) easy (old data!)

Managing a /dev/data Symbolic Link

For redundant data partitions the active rootfs slot has to mount the correct data partition dynamically. For example
with ubifs, a udev rule set can be used for this:

KERNEL=="ubi[0-9]_[0-9]", PROGRAM="/usr/bin/is-parent-active %k", RESULT=="1",
→˓SYMLINK+="data"

This example first determines if ubiX_Y is a data slot with an active parent rootfs slot by calling the script below.
Then, the current ubiX_Y partition is bound to /dev/data if the script returned 1 as its output.

/usr/bin/is-parent-active is a simple bash script:

#!/bin/bash

ROOTFS_DEV=<determine rootfs by using proc cmdline or mount>
TEST_DEV=<obtain parent rootfs device for currently processed device (%k)>

if [[$ROOTFS_DEV == $TEST_DEV]]; then
echo 1

else
echo 0

fi

With this you can always mount /dev/data and get the correct data slot.

7.5 Adaptive Updates

We use the term adaptive updates explicitly to distinguish this approach from delta updates. Delta updates contain the
data necessary to move from one specific version the new version. Adaptive updates do not need to be installed on a
specific previous version. Instead, they contain information that allows adaptive selection of one of multiple methods,

70 Chapter 7. Advanced Topics

RAUC Documentation, Release 1.10.1

using data that is already available on the target system, either from any previous version or from an interrupted
installation attempt.

Adaptive updates are intended to be used together with HTTP Streaming, as this allows RAUC to download only the
parts of the bundle that are actually needed.

As the bundle itself still contains the full information, using adaptive updates does not change the normal flow of
creating, distributing and installing bundles. It can be considered only an optimization of download size for bundle
streaming.

To enable adaptive updates during bundle creation, add adaptive=<method> to the relevant [image.<slot
class>] sections of your manifest and configure the shared data directory in your system.conf.

Currently, the only supported adaptive method is block-hash-index.

7.5.1 Block-based Adaptive Update (block-hash-index)

This method works by creating an index file consisting of a hash for each data block in the image and then using this
to check whether the data for each block is available locally during installation. The index in generated when running
rauc bundle and included in the bundle together with the full image. After installation, RAUC also stores the
current index for each slot in the shared data directory.

During installation, RAUC accesses both slots (currently active and target) of the class to be installed and reads the
stored index for each. If no index is available for a slot (perhaps because adaptive mode was not used for previous
updates), it is generated on-demand, which will take additional time. Then RAUC will iterate over the hash index in
the bundle and try to locate a matching block (with the same hash) in the slots. Each match is verified by hashing the
data read from the slot, so this can be used even with read-write filesystems. If no match is found (because the block
contains new data), it is read from the image file in the bundle.

As this depends on random access to the image in the bundle and to the slots, this mode works only with block devices
and does not support .tar archives.

The index uses a SHA256 hash for each 4kiB block, which results in an index size of 0.8% of the original image. With
small changes (such as updating a single package) in an ext4 image, we have seen that around 10% of the bundle
size needs to be downloaded. When indices for all slots are available on the target, the installation duration (compared
to without adaptive mode) is often similar and can be slightly faster if the changes are small.

Note: Depending on the pattern of changed locations between the images, using a different compression configuration
for squashfs during bundle creation can reduce the download overhead due to large squashfs block sizes. For example,
a 64 kiB block size can be set with --mksquashfs-args="-b 64k".

7.6 RAUC casync Support

Note: Make sure to use a recent casync version (e.g. from the git repository).

Also, for using UBI support, make sure to add casync patches from https://github.com/systemd/casync/pull/227.

If file system images are sufficient, also check the more lightweight casync-nano tool which can be used as a drop-in
replacement for these use cases.

Since 1.8, RAUC also supports the alternative desync written in Go.

For compatiblitiy and comparison with RAUC’s built-in streaming support, refer to casync vs. RAUC Built-in Stream-
ing & Adaptive Updates.

7.6. RAUC casync Support 71

https://github.com/systemd/casync
https://github.com/systemd/casync/pull/227
https://github.com/florolf/casync-nano
https://github.com/folbricht/desync

RAUC Documentation, Release 1.10.1

Using the Content-Addressable Data Synchronization tool casync for updating embedded / IoT devices provides a
couple of benefits. By splitting and chunking the update artifacts into reusable pieces, casync allows to

• stream remote bundles to the target without occupying storage / NAND

• minimize transferred data for an update by downloading only the delta to the running system

• reduce data storage on server side by eliminating redundancy

• good handling for CDNs due to similar chunk sizes

For a full description of the way casync works and what you can do with it, refer to the blog post by its author Lennart
Poettering or visit the GitHub site.

RAUC supports using casync index files instead of complete images in its bundles. This way the real size of the bundle
comes down to the size of the index files required for referring to the individual chunks. The real image data contained
in the individual chunks can be stored in one single repository, for a whole systems with multiple images as well as
for multiple systems in different versions, etc. This makes the approach quite flexible.

7.6.1 casync vs. RAUC Built-in Streaming & Adaptive Updates

Until RAUC 1.6, using ‘casync’ was the only method to update over the network without intermediate bundle storage
and to reduce the download size.

Since v1.6, RAUC comes with built-in streaming support for the verity and crypt bundle formats. This supports
streaming the bundle content (images) directly into the target slots without the need of intermediate storage.

In RAUC 1.8, ‘adaptive updates’ were added that provide a built-in mechanism for reducing download size.

Both casync support and built-in HTTP(S) streaming & adaptive updates will be supported in parallel for now.

Note: Currently, the only adaptive update mode supported is block-hash-index which works for block devices
only (not file-based)

The main differences between casync and the built-in streaming with adaptive updates are:

• casync requires bundle conversion and a separate sever-side chunk store while streaming adaptive updates is a
fully transparent process (except that it requires the server to support HTTP range requests)

• caysnc supports chunk-based differential updates for both block-based and file/directory-based updates while
adaptive updates currently only support block-based updates

• adaptive updates potentially allow the the installation process to choose the optimal installation method out of
multiple available

Note: If streaming support is enabled, RAUC will not be able to download plain casync bundles anymore! An
attempt will fail with:

Bundle format 'plain' not supported in streaming mode

The possible solutions to this are:

a) migrate to the verity bundle format if possible, or

b) disable streaming support by calling ./configure with --disable-streaming.

72 Chapter 7. Advanced Topics

http://0pointer.net/blog/casync-a-tool-for-distributing-file-system-images.html
https://github.com/systemd/casync

RAUC Documentation, Release 1.10.1

7.6.2 Creating casync Bundles

Creating RAUC bundles with casync index files is a bit different from creating ‘conventional’ bundles. While the
bundle format remains the same and you could also mix conventional and casync-based bundles, creating these bundles
is not straight forward when using common embedded build systems such as Yocto, PTXdist or buildroot.

Because of this, we decided use a two-step process for creating casync RAUC bundles:

1. Create ‘conventional’ RAUC bundle

2. Convert to casync-based RAUC bundle

RAUC provides a command for creating casync-based bundles from ‘conventional’ bundles. Simply call:

rauc convert --cert=<certfile> --key=<keyfile> --keyring=<keyring> conventional-
→˓bundle.raucb casync-bundle.raucb

The conversion process will create two new artifacts:

1. The converted bundle casync-bundle.raucb with casnyc index files instead of image files

2. A casync chunk store casync-bundle.castr/ for all bundle images. This is a directory with chunks grouped by
subfolders of the first 4 digits of their chunk ID.

7.6.3 Installing casync Bundles

The main difference between installing conventional bundles and bundles that contain casync index files is that RAUC
requires access to the remote casync chunk store during installation of the bundle.

Due to the built-in network support of both casync and RAUC, it is possible to directly give a network URL as the
source of the bundle:

rauc install https://server.example.com/deploy/bundle-20180112.raucb

By default, RAUC will assume the corresponding casync chunk store is located at the same location as the bundle (with
the .castr extension instead of .raucb), in this example at https://server.example.com/deploy/
bundle-20180112.castr. The default location can also be configured in the system config to point to a generic
location that is valid for all installations.

When installing a bundle, the casync implementation will automatically handle the chunk download via an unprivi-
leged helper binary.

Reducing Download Size – Seeding

Reducing the amount of data to be transferred over slow connections is one of the main goals of using casync for
updating. Casync splits up the images or directory trees it handles into reusable chunks of similar size. Doing this
both on the source as well as on the destination side allows comparing the hashes of the resulting chunks to know
which parts are different.

When we update a system, we usually do not change its entire file tree, but only update a few libraries, the kernel,
the application, etc. Thus, most of the data can be retrieved from the currently active system and does not need to be
fetched via the network.

For each casync image that RAUC extracts to the target slot, it determines an appropriate seed. This is normally a
redundant slot of the same class as the target slot but from the currently booted slot group.

7.6. RAUC casync Support 73

RAUC Documentation, Release 1.10.1

Note: Depending on your targets processing and storage speed, updating slots with casync can be a bit slower than
conventional updates, because casync first has to process the entire seed slot to calculate the seed chunks. After this is
done it will start writing the data and fetch missing chunks via the network.

7.7 Handling Board Variants With a Single Bundle

If you have hardware variants that require installing different images (e.g. for the kernel or for an FPGA bitstream),
but have other slots that are common (such as the rootfs) between all hardware variants, RAUC allows you to put
multiple different variants of these images in the same bundle. RAUC calls this feature ‘image variants’.

If you want to make use of image variants, you first of all need to say which variant your specific board is.
You can do this in your system.conf by setting exactly one of the keys variant-dtb, variant-file or
variant-name.

[system]
...
variant-dtb=true

The variant-dtb is a Boolean that allows (on device-tree based boards) to use the systems compatible string as
the board variant.

[system]
...
variant-file=/path/to/file

A more generic alternative is the variant-file key. It allows to specify a file that will be read to obtain the variant
name. Note that the content of the file should be a simple string without any line breaks. A typical use case would
be to generate this file (in /run) during system startup from a value you obtained from your bootloader. Another use
case is to have a RAUC post-install hook that copies this file from the old system to the newly updated one.

[system]
...
variant-name=myvariant-name

A third variant to specify the systems variant is to give it directly in your system.conf. This method is primary meant
for testing, as this prevents having a generic rootfs image for all variants!

In your manifest, you can specify variants of an image (e.g. the kernel here) as follows:

[image.kernel.variant-1]
filename=variant1.img
...

[image.kernel.variant-2]
filename=variant1.img
...

It is allowed to have both a specific variant as well as a default image in the same bundle. If a specific variant of the
image is available, it will be used on that system. On all other systems, the default image will be used instead.

If you have a specific image variant for one of your systems, it is mandatory to also have a default or specific variant for
the same slot class for any other system you intend to update. RAUC will report an error if for example a bootloader

74 Chapter 7. Advanced Topics

RAUC Documentation, Release 1.10.1

image is only present for variant A when you try to install on variant B. This should prevent bricking your device by
unintentional partial updates.

7.8 Manually Writing Images to Slots

In order to write an image to a slot without using update mechanics like hooks, slot status etc. use:

rauc write-slot <slotname> <image>

This uses the correct handler to write the image to the slot. It is useful for development scenarios as well as initial
provisioning of embedded boards.

7.9 Updating the Bootloader

Updating the bootloader is a special case, as it is a single point of failure on most systems: The selection of which
redundant system images should be booted cannot itself be implemented in a redundant component (otherwise there
would need to be an even earlier selection component).

Some SoCs contain a fixed firmware or ROM code which already supports redundant bootloaders, possibly integrated
with a HW watchdog or boot counter. On these platforms, it is possible to have the selection point before the boot-
loader, allowing it to be stored redundantly and updated as any other component.

If redundant bootloaders with fallback is not possible (or too inflexible) on your platform, you may instead be able to
ensure that the bootloader update is atomic. This doesn’t support recovering from a buggy bootloader, but will prevent
a non-bootable system caused by an error or power-loss during the update.

Whether atomic bootloader updates can be implemented depends on your SoC/firmware and storage medium.

Note: Most bootloaders need some space to persistently store the state of the fallback logic. This storage is also
normally accessed by RAUC to communicate with the bootloader during update installation and after successful
boots. Some bootloaders use an environment file or partitions for this (for example GRUB’s grubenv file or U-
Boot’s saveenv command), others have specialized mechanisms (Barebox’s state framework)

If the bootloader should be updateable, this storage space must be outside of the bootloader partition, as it would
otherwise be overwritten by an update. More generally, the bootloader partition should only be written to when
updating the bootloader, so it should not contain anything else that should be written separately (such as bootloader
env, kernel or initramfs).

7.9.1 Update Bootloader in eMMC Boot Partitions

RAUC supports updating a bootloader in eMMC boot partitions (see the section 6.3.2 boot partition in JEDEC standard
JESD84-B51 for details), one of which can be enabled atomically via configuration registers in the eMMC (ext_csd
registers). These partitions are accessible under Linux as /dev/mmcblk*boot[01].

The required slot type is boot-emmc. The device to be specified is expected to be the root device. The corresponding
boot partitions are derived automatically. A system.conf could look like this:

[slot.bootloader.0]
device=/dev/mmcblk1
type=boot-emmc

7.8. Manually Writing Images to Slots 75

https://barebox.org/doc/latest/user/state.html
http://www.jedec.org/standards-documents/results/jesd84-b51

RAUC Documentation, Release 1.10.1

Important: A kernel bug may prevent consistent toggling of the eMMC ext_csd boot partition register. Be sure your
kernel is >= 4.16-rc7 (resp. >= 4.15.14, >= 4.14.31) or contains this patch: https://www.spinics.net/lists/linux-mmc/
msg48271.html

7.9.2 Update Bootloader Partition in MBR

Some SoCs (like Xilinx ZynqMP) contain a fixed ROM code, which boots from the first partition in the MBR partition
table of a storage medium. In order to atomically update the bootloader of such systems, RAUC supports modifying
the MBR to switch the actual location of the first partition between the first and second halves of a pre-defined disk
region. The active half of the region is the one currently referenced by the MBR’s first partition entry (i.e. the first
partition) while the inactive half is not referenced by the MBR at all. A Bootloader update is written into the currently
inactive half of the region. After having written the bootloader, RAUC modifies the MBR’s first partition entry to point
to the formerly inactive half.

The disk region for the MBR bootloader partition switch has to be configured in the corresponding slot’s system config
section (see below). This configured disk region must span both potential locations of the bootloader partition, i.e.
both the first and second halves mentioned above. The initial MBR must define a bootloader partition at either the first
or the second half of the configured region.

Consider the following example layout of a storage medium with a bootloader partition size of 32 MiB:

Start. . . End Size
0x0000000. . . 0x00001ff 512 bytes MBR
0x0000200. . . 0x00fffff almost 1MiB alignment, state, barebox-

environment, . . .

0x0100000. . . 0x40fffff
0x0100000. . . 0x20fffff
0x2100000. . . 0x40fffff

64 MiB
32 MiB
32 MiB

MBR switch region containing:
- active first half (entry in MBR)
- inactive second half (no entry in
MBR)

0x4100000. . . Remaining size other partitions (partition table en-
tries 2, 3, 4)

RAUC uses the start address and size defined in the first entry of the MBR partition table to detect whether the first
or second half is currently active as the bootloader partition and updates the hidden, other half: After the update, the
bootloader is switched by changing the first partition entry and writing the whole MBR (512 bytes) atomically.

The required slot type is boot-mbr-switch. The device to be specified is the underlying block device (not the
bootloader partition!), as the MBR itself is outside of the region. The region containing both halves is configured using
region-start and region-size. Both values have to be set in integer decimal bytes and can be post-fixed with
K/M/G/T.

A system.conf section for the example above could look like this:

[slot.bootloader.0]
device=/dev/mmcblk1
type=boot-mbr-switch
region-start=1048576
region-size=64M

76 Chapter 7. Advanced Topics

https://www.spinics.net/lists/linux-mmc/msg48271.html
https://www.spinics.net/lists/linux-mmc/msg48271.html

RAUC Documentation, Release 1.10.1

It defines a region starting at 0x100000 with a size of 64M. This region will be split up into two region halves of
equal size by RAUC internally. The resulting first half begins at the start of the region, i.e. 0x100000, and has a
size of 32M. The second half begins in the middle of the region (0x100000 + 32M = 0x2100000) and ends
at the end of the defined region. The MBR’s bootloader partition entry should initially point to 0x100000, with a
size of 32M. This must be followed by a “hole” with a size of 32MB before the start of the next partition entry (at
0x4100000).

7.9.3 Update Bootloader Partition in GPT

Systems booting via UEFI have a special partition, called the EFI system partition (ESP), which contains the boot-
loader to be started by the UEFI firmware. Also, some newer ARM SoCs support loading the bootloader directly from
a GPT partition.

To allow atomic updates of these partitions, RAUC supports changing the GPT to switch the first GPT partition entry
between the first and second halves of a region configured for that purpose. This works similarly to the handling of
a MBR bootloader partition entry as described in the previous section. It requires RAUC to be compiled with GPT
support (./configure --enable-gpt) and adds a dependency on libfdisk.

The required slot type is boot-gpt-switch. The device to be specified is expected to be the underlying block
device (not a partition). The bootloader partitions are derived by the definition of the values region-start and
region-size. Both values have to be set in integer decimal bytes and can be post-fixed with K/M/G/T.

To ensure that the resulting GPT entries are well aligned, the region start must be a multiple of the grain value (as
used by sfdisk), which is 1MB by default. Accordingly, the region size must be aligned to twice the grain value (to
ensure that the start of the second half is aligned as well).

Note that RAUC expects that the partition table always points exactly to one of the halves.

A system.conf section could look like this:

[slot.esp.0]
device=/dev/sda
type=boot-gpt-switch
region-start=1M
region-size=64M

7.9.4 Update Raw Bootloader Partition with Fallback

Some SoCs (like the Rockchip RK3568) contain a fixed ROM code that searches the possible boot media for valid
images in a defined order. Usually this happens at two or more fixed addresses (“locations”). Special headers, magic
numbers, checksums, or a combination of these may be used to determine if a valid image exists at such an address.

This behavior can be used to implement an atomic update of a bootloader. To do this, the bootloader, which starts
with the required header, is installed in two locations that the ROM code searches for possible bootloader images.
For example, usually only the code in the first location is used, and the second is redundant and ignored. During an
update, the currently unused location is updated first, and followed by the other location (which was likely just booted
from). It is important that the corresponding header is always deleted first, then the bootloader image is written and
the header is only written last. This ensures that there is always a valid image in either location and that half-written
images are not attempted to boot from.

The required slot type is boot-raw-fallback. The device to be specified is expected to be the underlying block
device. The location of each copy in the boot region is derived from the values region-start and region-size.
Both values have to be set in integer decimal bytes and can be post-fixed with K/M/G/T.

A system.conf section could look like this:

7.9. Updating the Bootloader 77

RAUC Documentation, Release 1.10.1

[slot.bootloader.0]
device=/dev/mmcblk0
type=boot-raw-fallback
region-start=32k
region-size=4M

It defines a region starting at 0x8000 with a size of 4M. This region will be split up into two halves of equal size by
RAUC internally. This results in two halves, one starting at 0x8000 and one at 0x208000, both with a size of 2M.
The first half is the location where the normally used bootloader should be stored and the second defines the location
of the fallback location. The header size is currently fixed to 512 bytes.

Since the implementation makes certain assumptions, it is important that the SoC ROM code tries to boot from the
first location first. Note that under most circumstances the update will appear to work fine even if the two locations are
swapped. However, for the update to actually be failsafe, the locations must be searched in order by SoC ROM code.

7.9.5 Bootloader Update Ideas

The NXP i.MX6 supports up to four bootloader copies when booting from NAND flash. The ROM code will try each
copy in turn until it finds one which is readable without uncorrectable ECC errors and has a correct header. By using
the trait of NAND flash that interrupted writes cause ECC errors and writing the first page (containing the header) last,
the bootloader images can be replaced one after the other, while ensuring that the system will boot even in case of a
crash or power failure.

The slot type could be called “boot-imx6-nand” analogous to eMMC.

7.9.6 Considerations When Updating the Bootloader

Booting an old system with a new bootloader is usually not tested during development, increasing the risk of problems
appearing only in the field. If you want to address this issue do not add the bootloader to your bundle, but rather use
an approach like this:

• Store a copy of the bootloader in the rootfs.

• Use RAUC only to update the rootfs. The combinations to test can be reduced by limiting which old versions
are supported by an update.

• Reboot into the new system.

• On boot, before starting the application, check that the current slot is ‘sane’. Then check if the installed boot-
loader is older than the version shipped in the (new) rootfs. In that case:

– Disable the old rootfs slot and update the bootloader.

– Reboot

• Start the application.

This way you still have fallback support for the rootfs upgrade and need to test only:

• The sanity check functionality and the bootloader installation when started from old bootloader and new rootfs

• Normal operation when started from new bootloader and new rootfs

The case of new bootloader with old rootfs can never happen, because you disable the old one from the new before
installing a new bootloader.

If you need to ensure that you can fall back to the secondary slot even after performing the bootloader update, you
should check that the “other” slot contains the same bootloader version as the currently running one during the sanity
check. This means that you need to update both slots in turn before the bootloader is updated.

78 Chapter 7. Advanced Topics

RAUC Documentation, Release 1.10.1

7.10 Updating Sub-Devices

Besides the internal storage, some systems have external components or sub-devices which can be updated. For
example:

• Firmware for micro-controllers on modular boards

• Firmware for a system management controller

• FPGA bitstreams (stored in a separate flash)

• Other Linux-based systems in the same enclosure

• Software for third-party hardware components

In many cases, these components have some custom interface to query the currently installed version and to upload an
update. They may or may not have internal redundancy or recovery mechanisms as well.

Although it is possible to configure RAUC slots for these and let it call a script to perform the installation, there are
some disadvantages to this approach:

• After a fallback to an older version in an A/B scenario, the sub-devices may be running an incompatible (newer)
version.

• A modular sub-device may be replaced and still has an old firmware version installed.

• The number of sub-devices may not be fixed, so each device would need a different slot configuration.

Instead, a more robust approach is to store the sub-device firmware in the rootfs and (if needed) update them to
the current versions during boot. This ensures that the sub-devices are always running the correct set of versions
corresponding to the version of the main application.

If the bootloader falls back to the previous version on the main system, the same mechanism will downgrade the sub-
devices as needed. During a downgrade, sub-devices which are running Linux with RAUC in an A/B scenario will
detect that the image to be installed already matches the one in the other slot and avoid unnecessary installations.

7.11 Migrating to an Updated Bundle Version

As RAUC undergoes constant development, it might be extended and new features or enhancements will make their
way into RAUC. Thus, also the sections and options contained in the bundle manifest may be extended over time.

To assure a well-defined and controlled update procedure, RAUC is rather strict in parsing the manifest and will reject
bundles containing unknown configuration options.

But, this does not prevent you from being able to use those new RAUC features on your current system. All you have
to do is to perform an intermediate update:

• Create a bundle containing a rootfs with the recent RAUC version, but not containing the new RAUC features
in its manifest.

• Update the target system and reboot.

• Now you have a target system with a recent RAUC version which is able to interpret and appropriately handle a
bundle with the latest options.

7.12 Software Deployment

When designing your update infrastructure, you must think about how to deploy the updates to your device(s). In
general, you have two major options: Deployment via storage media such as USB sticks or network-based deployment.

7.10. Updating Sub-Devices 79

RAUC Documentation, Release 1.10.1

As RAUC uses signed bundles instead of e.g. trusted connections to enable update author verification, RAUC fully
supports both methods with the same technique and you may also use both of them in parallel.

Some influential factors on the method to used can be:

• Do you have network access on the device?

• How many devices have to be updated?

• Who will perform the update?

7.12.1 Deployment via Storage Media

This method is mainly used for decentralized updates of devices without network access (either due to missing infras-
tructure or because of security concerns).

To handle deployment via storage media, you need a component that detects the plugged-in storage media and calls
RAUC to trigger the actual installation.

When using systemd, you could use automount units for detecting plugged-in media and trigger an installation.

7.12.2 Deployment via Deployment Server

Deployment over a network is especially useful when having a larger set of devices to update or direct access to these
devices is tricky.

As RAUC focuses on update handling on the target side, it does not provide a deployment server out of the box. But
if you do not already have a deployment infrastructure, there a few Open Source deployment server implementations
available in the wilderness.

One such service worth being mentioned is hawkBit from the Eclipse IoT project, which also provides some strategies
for rollout management for larger-scale device farms.

RAUC hawkBit Updater (C)

The rauc-hawkbit-updater is a separate application project developed under the RAUC organization umbrella. It aims
to provide a ready-to-use bridge between the hawkBit REST DDR API on one side and the RAUC D-Bus API on the
other.

For more information visit it on GitHub:

https://github.com/rauc/rauc-hawkbit-updater

The RAUC hawkBit Client (python)

As a separate project, the RAUC development team provides a Python-based example application that acts as a hawkBit
client via its REST DDI-API while controlling RAUC via D-Bus.

For more information visit it on GitHub:

https://github.com/rauc/rauc-hawkbit

It is also available via PyPI:

https://pypi.python.org/pypi/rauc-hawkbit/

80 Chapter 7. Advanced Topics

https://www.freedesktop.org/software/systemd/man/systemd.automount.html
https://eclipse.org/hawkbit/
https://github.com/rauc/rauc-hawkbit-updater
https://github.com/rauc/rauc-hawkbit
https://pypi.python.org/pypi/rauc-hawkbit/

RAUC Documentation, Release 1.10.1

Upparat: Client for AWS IoT Jobs (python)

Upparat acts as a client for AWS IoT Jobs that can be used together with RAUC.

For more information visit it on GitHub:

https://github.com/caruhome/upparat

It is also available via PyPI:

https://pypi.org/project/upparat/

7.12. Software Deployment 81

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://github.com/caruhome/upparat
https://pypi.org/project/upparat/

RAUC Documentation, Release 1.10.1

82 Chapter 7. Advanced Topics

CHAPTER 8

Design Checklist

This checklist is intended to help you verify that your design and implementation cover the important corner-cases and
details. Even if not all items are ticked off for your system, it’s useful to have at least thought about them. Most of
these are general considerations and not strictly RAUC specific.

8.1 General

• System compatible is specific enough

• Bundle version policy defined

• Bundle contains all software components

• Bundles are created automatically by a build system

• Bundles use the verity format

• Bundle format plain is disabled in system.conf

• Bundle deployment mechanism defined (pull or push via the network, from USB/SD, . . .)

• Proper slot status file location(s) defined (preferably central status)

8.2 Slot Layout

• Slot layout provides the desired redundancy

• Complexity vs. simplicity trade-offs understood

• Single points of failure identified and well tested

• Factory disk image includes all slots with default contents

• Appropriate image formats selected (tar or filesystem-image)

• Bootloader uses the same names configured in system.conf as bootname

83

RAUC Documentation, Release 1.10.1

• Bootloader update mechanism defined (or declared as fixed)

8.3 Recovery Mechanism

• The initial (factory) boot configuration is correct

• Boot failures are detected by the bootloader

• Booting the same slot is retried the correct number of times (once or more)

• The behavior if one slot fails to boot is defined (fallback to old version or not)

• The behavior if all slots fail to boot is defined (retry or poweroff)

8.3.1 If Using a HW Watchdog for Error Detection

• Watchdog is never disabled before application is ready

• Bootloader distinguishes watchdog resets from normal boot

• Bootloader ensures the watchdog is enabled before starting the kernel

• The watchdog reset reinitializes the whole system (power supplies, storage, SoC, . . .)

• All essential services are monitored by the watchdog

8.3.2 If Not Using a HW Watchdog for Error Detection

• Bootloader detects failed boots via a counter

• Boot counter is reset on a successful boot

• All essential services work before confirming the current boot as successful

8.4 Security

• PKI configured

• Certificate validity periods defined

– Systems always have correct time or

– Validity period is large enough

• Key revocation tested

– Updated CRLs can be deployed in time or

– CRLs do not expire

• Key rollover tested

• Separate development and release keys deployed

• Per-user or per-role keys deployed

84 Chapter 8. Design Checklist

RAUC Documentation, Release 1.10.1

8.5 Data Migration

• Passwords/SSH keys are preserved during updates

• Shared data is handled correctly during up- and downgrades

8.5. Data Migration 85

RAUC Documentation, Release 1.10.1

86 Chapter 8. Design Checklist

CHAPTER 9

Frequently Asked Questions

• Why doesn’t the installed system use the whole partition?

• Is it possible to use RAUC without D-Bus (Client/Server mode)?

• Why does RAUC not have an ext2 / ext3 file type?

• Is the RAUC bundle format forwards/backwards compatible?

• Can I use RAUC with a dm-verity-protected partition?

• Can I use RAUC with a dm-crypt-protected partition?

• What causes a payload size that is not a multiple of 4kiB?

• How can I refer to devices if the numbering is not fixed?

• Why does the installation fail with a resize2fs error?

9.1 Why doesn’t the installed system use the whole partition?

The filesystem image installed via RAUC was probably created for a size smaller than the partition on the target device.

Especially in cases where the same bundle will be installed on devices which use different partition sizes, tar archives
are preferable to filesystem images. When RAUC installs from a tar archive, it will first create a new filesystem on the
target partition, allowing use of the full size.

9.2 Is it possible to use RAUC without D-Bus (Client/Server mode)?

Yes. If you compile RAUC using the --disable-service configure option, you will be able to compile RAUC
without service mode and without D-Bus support:

87

RAUC Documentation, Release 1.10.1

./configure --disable-service

Then every call of the command line tool will be executed directly rather than being forwarded to the RAUC service
process running on your machine.

9.3 Why does RAUC not have an ext2 / ext3 file type?

ext4 is the successor of ext3. There is no advantage in using ext3 over ext4.

Some people still tend to select ext2 when they want a file system without journaling. This is not necessary, as one
can turn off journaling in ext4, either during creation:

mkfs.ext4 -O ^has_journal

or later with:

tune2fs -O ^has_journal

Note that even if there is only an ext4 slot type available, potentially each file system mountable as ext4 should work
(with the filename suffix adapted).

9.4 Is the RAUC bundle format forwards/backwards compatible?

While RAUC now supports two bundle formats (verity and crypt) in addition to the original format (plain), all are still
installable by default. Support for the old format can be disabled via the configuration. Going forward, any issue with
installing bundles using old formats or features would be considered a bug, except after an explicit deprecation period
of several years.

Newer RAUC versions have added features (such as casync), slot types (eMMC/MBR/GPT bootloader partitions)
and bundle formats (verity and crypt). Only if you use those features by enabling them in the bundle manifest, older
versions of RAUC that cannot handle them will refuse to install the bundle. As long as you don’t enable new features,
our intention is that bundles created by newer versions will be installable by older versions and any such issues would
be considered a bug.

Some background is described in the Forward and Backward Compatibility section.

If there are ever reasons that require an incompatible change, you can use a two step migration using an intermediate
version.

9.5 Can I use RAUC with a dm-verity-protected partition?

Yes you can, as the offline-generated dm-verity hash tree is simply part of the image that RAUC writes to the partition.
To ensure RAUC does not corrupt the partition by executing hooks or writing slot status information, use type=raw
in the respective slot config and use a global (see slot status file) on a separate non-redundant partition with setting
statusfile=</path/to/global.status>.

9.6 Can I use RAUC with a dm-crypt-protected partition?

Yes you can, by using the /dev/mapper/<devicename> as the device for the slot (with the type of the filesystem
of your choice). This way, RAUC interacts only with the unencrypted device/content.

88 Chapter 9. Frequently Asked Questions

RAUC Documentation, Release 1.10.1

For example, with an encrypted root filesystem slot (perhaps unlocked by an initramfs loaded from a different parti-
tion):

[slot.rootfs.0]
device=/dev/mapper/crypt-rootfs0
type=ext4
bootname=system0

Remember to unlock the inactive slots as well so that RAUC can write to them.

9.7 What causes a payload size that is not a multiple of 4kiB?

RAUC versions up to 1.4 had an issue in the casync bundle signature generation, which caused two signatures to be
appended. While the squashfs payload size is a multiple of 4kiB, the end of the first signature was not aligned. As
RAUC uses the second (“outer”) signature during verification, this didn’t cause problems. RAUC 1.5 fixed the casync
bundle generation and added stricter checks, which rejected the older bundles. In RAUC 1.5.1, this was reduced to a
notification message.

To avoid the message, you can recreate the bundle with RAUC 1.5 and newer.

9.8 How can I refer to devices if the numbering is not fixed?

There are many reasons why device numbering might change from one kernel version to the next, across boots or even
between hardware variants. In the context of RAUC, this is mainly relevant for block, MTD and UBI devices.

In almost all cases, the proper way to configure this is to use udev rules.

For block devices, udev ships with rules which create symlinks in /dev/disk/by-path/. These are not affected
by changes in the probe order or by other devices that are not always connected. For example, on an emulated ARM
machine, this results in:

root@qemuarm:~# ls -l /dev/disk/by-path
lrwxrwxrwx 1 root root 9 Nov 18 12:46 platform-a003c00.virtio_mmio
→˓-> ../../vda

By using /dev/disk/by-path/platform-a003c00.virtio_mmio in your configuration, you ensure that
you always refer to the same block device.

For UBI volumes, no equivalent rules are currently shipped by udev, so custom rules can be used. Depending on how
the symlinks should be named, different rules could be used:

Use the volume name instead of the number
SUBSYSTEM=="ubi", KERNEL=="ubi*_*", ATTRS{mtd_num}=="*", SYMLINK+="$parent_%s{name}"
Use the MTD device number instead of the UBI device number
SUBSYSTEM=="ubi", KERNEL=="ubi*_*", ATTRS{mtd_num}=="*", SYMLINK+="ubi_mtd%s{mtd_num}_
→˓%s{name}"
Use the MTD device name instead of the UBI device number
SUBSYSTEM=="ubi", KERNEL=="ubi*_*", ATTRS{mtd_num}=="*", IMPORT{program}="/bin/sh -ec
→˓'echo MTD_NAME=$(cat /sys/class/mtd/mtd%s{mtd_num}/name)'" SYMLINK+="ubi_%E{MTD_
→˓NAME}_%s{name}"

When enabling all of these rules (which you should not do), you will get something like:

9.7. What causes a payload size that is not a multiple of 4kiB? 89

https://www.freedesktop.org/software/systemd/man/udev.html

RAUC Documentation, Release 1.10.1

crw------- 1 root root 249, 0 Nov 18 13:46 /dev/ubi0
crw------- 1 root root 249, 1 Nov 18 13:46 /dev/ubi0_0
lrwxrwxrwx 1 root root 6 Nov 18 13:46 /dev/ubi0_rauc-test -> ubi0_0
lrwxrwxrwx 1 root root 6 Nov 18 13:46 /dev/ubi_nandsim_rauc-test -> ubi0_0
crw------- 1 root root 10, 59 Nov 18 13:46 /dev/ubi_ctrl
lrwxrwxrwx 1 root root 6 Nov 18 13:46 /dev/ubi_mtd3_rauc-test -> ubi0_0

Custom udev rules can also be very useful when you want to refer to the active data partition (in a scenario with
redundant data partitions) with a fixed name.

9.9 Why does the installation fail with a resize2fs error?

When installing a ext4 image with resize=true configured for that slot, it may happen that the ext4 image has
features enabled which are not supported by the currently used version of resize2fs.

For example, e2fstools 1.47 enabled the orphan_file feature by default and is included in Yocto mickledore.
When an image generated by Yocto mickledore is installed on an older release (perhaps built using kirkstone or older),
that version of resize2fs will refuse to modify the filesystem and the installation will be aborted:

LastError: Installation error: Failed updating slot rootfs.1: Failed to run
→˓resize2fs: Child process exited with code 1

In the log output from RAUC, you’ll find more details:

...
rauc[409]: opening slot device /dev/mmcblk0p2
rauc[409]: writing data to device /dev/mmcblk0p2
rauc[409]: Resizing /dev/mmcblk0p2
...
rauc[551]: resize2fs 1.46.5 (30-Dec-2021)
rauc[551]: resize2fs: Filesystem has unsupported feature(s) (/dev/mmcblk0p2)
rauc[409]: Installation error: Failed updating slot rootfs.1: Failed to run
→˓resize2fs: Child process exited with code 1
...

The solution for this is to disable the unsupported filesystem features during the image generation. When using Yocto,
in case of the orphan_file file feature, you could use:

EXTRA_IMAGECMD:ext4:append = " -O ^orphan_file"

in the image recipe or an appropriate conf file to disable the feature until all systems have been updated with versions
of resize2fs which support this feature.

90 Chapter 9. Frequently Asked Questions

CHAPTER 10

Reference

• System Configuration File

• Manifest

• Bundle Formats

• Slot Status

• Command Line Tool

• Custom Handlers (Interface)

• Hooks (Interface)

• D-Bus API

• RAUC’s Basic Update Procedure

• Bootloader Interaction

10.1 System Configuration File

A configuration file located in /etc/rauc/system.conf describes the number and type of available slots. It is
used to validate storage locations for update images. Each board type requires its special configuration.

This file is part of the root file system.

Note: When changing the configuration file on your running target you need to restart the RAUC service in order to
let the changes take effect.

Example configuration:

91

RAUC Documentation, Release 1.10.1

[system]
compatible=FooCorp Super BarBazzer
bootloader=barebox
data-directory=/srv/rauc
bundle-formats=-plain

[keyring]
path=/etc/rauc/keyring.pem

[handlers]
system-info=/usr/lib/rauc/info-provider.sh
post-install=/usr/lib/rauc/postinst.sh

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system0

[slot.rootfs.1]
device=/dev/sda1
type=ext4
bootname=system1

[system] section

compatible A user-defined compatible string that describes the target hardware as specific enough as required to
prevent faulty updating systems with the wrong firmware. It will be matched against the compatible string
defined in the update manifest.

bootloader The bootloader implementation RAUC should use for its slot switching mechanism. Currently sup-
ported values (and bootloaders) are barebox, grub, uboot, efi, custom, noop.

bundle-formats This option controls which bundle formats are allowed when verifying a bundle. You can either
specify them explicitly by using a space-separated list for format names (such as plain verity). In this
case, any future changes of the built-in defaults will have no effect.

Alternatively, you can use format names prefixed by - or + (such as -plain) to enable or disable formats
relative to the default configuration. This way, formats added in newer releases will be active automatically.

mountprefix Prefix of the path where bundles and slots will be mounted. Can be overwritten by the command line
option --mount. Defaults to /mnt/rauc/.

grubenv Only valid when bootloader is set to grub. Specifies the path under which the GRUB environment
can be accessed.

barebox-statename Only valid when bootloader is set to barebox. Overwrites the default state state to
a user-defined state name. If this key not exists, the bootchooser framework searches per default for /state or
/aliases/state.

barebox-dtbpath Only valid when bootloader is set to barebox. Allows to set a path to a separate device-
tree (dtb) file to be used for reading barebox state definition from. This is mainly useful for systems that do not
use devicetrees by default, like x86 systems.

Note: Requires to have at least dt-utils version 2021.03.0

boot-attempts This configures the number of boot attempts to set when a slot is marked good through the D-Bus
API or via the command line tool. The configured value should match the bootloader’s reset value for attempts.
This is currently only supported when bootloader is set to uboot or barebox and defaults to 3 if not set.

92 Chapter 10. Reference

https://www.barebox.org/doc/latest/user/state.html
https://git.pengutronix.de/cgit/tools/dt-utils

RAUC Documentation, Release 1.10.1

boot-attempts-primary This configures the number of boot attempts to set when a slot is marked as primary
(i.e., when an update was installed successfully). This is currently only supported when bootloader is set to
uboot or barebox and defaults to 3 if not set.

efi-use-bootnext Only valid when bootloader is set to efi. If set to false, this disables using efi variable
BootNext for marking a slot primary. This is useful for setups where the BIOS already handles the slot
switching on watchdog resets. Behavior defaults to true if the option is not set.

activate-installed This boolean value controls if a freshly installed slot is automatically marked active with
respect to the used bootloader. Its default value is true which means that this slot is going to be started the next
time the system boots. If the value of this parameter is false the slot has to be activated manually in order to
be booted, see section Manually Switch to a Different Slot.

statusfile

Note: This option is deprecated. Consider using data-directory instead. For more details about
backwards compatibility, see data-directory.

Can be set to point to a central file where slot status information should be stored (e.g. slot-specific
metadata, see Slot Status).

Important: This file must be located on a non-redundant filesystem which is not overwritten during
updates.

data-directory This path configures the directory where RAUC should store its slot status and any other internal
information. In most cases, a shared RAUC data directory is preferable, as it allows storing data also for read-
only or filesystem-less slots.

We have multiple levels of backwards compatibility:

• per-slot status and no shared data directory (by default or explicitly with statusfile=per-slot)

• central status file and no shared data directory (statusfile=/data/central.raucs)

• central status file and shared data directory (statusfile=/data/central.raucs and
data-directory=/data/rauc)

• central status file in shared data directory (data-directory=/data/rauc, implies
statusfile=/data/rauc/central.raucs)

Important: This directory must be located on a non-redundant filesystem which is not overwritten during
updates.

max-bundle-download-size Defines the maximum downloadable bundle size in bytes, and thus must be a
simple integer value (without unit) greater than zero. It overwrites the compiled-in default value of 8388608 (8
MiB).

variant-name String to be used as variant name for this board. If set, neither variant-file nor
variant-dtb must be set. Refer chapter Handling Board Variants With a Single Bundle for more infor-
mation.

variant-file File containing variant name for this board. If set, neither variant-name nor variant-dtb
must be set. Refer chapter Handling Board Variants With a Single Bundle for more information.

10.1. System Configuration File 93

RAUC Documentation, Release 1.10.1

variant-dtb If set to true, use current device tree compatible as this boards variant name. If set, neither
variant-name nor variant-file must be set. Refer chapter Handling Board Variants With a Single
Bundle for more information.

perform-pre-check For verity and crypt bundles, this boolean value controls whether the complete bundle
is checked for data corruption before it is mounted. Normally, this option is not needed as every access to the
bundle payload during installation is already protected by dm-verity. The default value is false which
means that this pre-check is not performed.

This option is useful when the installation should be aborted early even if the corrupt part of the bundle is not
used during installation (perhaps due to adaptive updates or image variants).

It has no effect for plain bundles, as the signature verification already checks the whole bundle.

[keyring] section

The keyring section refers to the trusted keyring used for signature verification. Both path and directory
options can be used together if desired, though only one or the other is necessary to verify the bundle signature.

path Path to the keyring file in PEM format. Either absolute or relative to the system.conf file.

directory Path to the keyring directory containing one or more certificates. Each file in this directory must contain
exactly one certificate in CRL or PEM format. The filename of each certificate must have the form hash.N for a
certificate or hash.rN for CRLs; where hash is obtained by X509_NAME_hash(3) or the --hash option of
openssl(1) x509 or crl commands. See documentation in X509_LOOKUP_hash_dir(3) for details.

use-bundle-signing-time=<true/false> If this boolean value is set to true then the bundle signing
time is used instead of the current system time for certificate validation.

allow-partial-chain=<true/false> If this boolean value is set to true, RAUC will also treat interme-
diate certificates in the keyring as trust-anchors, in addition to self-signed root CA certificates. This makes it
possible to trust only one (or more) sub-tree(s) in a larger PKI.

Note that without the root CA certificate in the keyring, CRLs signed by it can not be authenticated. If CRL
checking is needed, the PKI needs to be structured with this in mind.

check-crl=<true/false> If this boolean value is set to true, RAUC will enable checking of CRLs (Certifi-
cate Revocation Lists) stored in the keyring together with the CA certificates. Note that CRLs have an expiration
time in their signature, so you need to make sure you don’t end up with an expired CRL on your device (which
would block further updates).

check-purpose This option can be used to set the OpenSSL certificate purpose used during chain verifica-
tion. Certificates in the chain with incompatible purposes are rejected. Possible values are provided by
OpenSSL (any, sslclient, sslserver, nssslserver, smimesign, smimeencrypt) and RAUC
(codesign). See -purpose and VERIFY OPERATION in the OpenSSL verify manual page and the Cer-
tificate Key Usage Attributes section for more information.

[streaming] section

The streaming section contains streaming-related settings. For more information about using the streaming support
of RAUC, refer to HTTP Streaming.

sandbox-user This option can be used to set the user name which is used to run the streaming helper
process. By default, the nobody user is used. At compile time, the default can be defined using the
--with-streaming-user=USERNAME configure option.

tls-cert This option can be used to set the path or PKCS#11 URL for the TLS/HTTPS client certificate.

tls-key This option can be used to set the path or PKCS#11 URL for the TLS/HTTPS client private key.

tls-ca This option can be used to set the path of the CA certificate which should be used instead of the system wide
store of trusted TLS/HTTPS certificates.

94 Chapter 10. Reference

https://www.openssl.org/docs/man1.1.1/man1/verify.html

RAUC Documentation, Release 1.10.1

[encryption]

The encryption section contains information required to decrypt a ‘crypt’ bundle. For more information about
encrypted RAUC bundle bundles, refer to Bundle Encryption.

key Path or PKCS#11 URL for the private key used to decrypt bundles. This is mandatory for decrypting encrypted
bundles.

cert Path or PKCS#11 URL for the certificate matching the encryption key. This is optional but allows to speed up
key lookup and thus is especially useful for larger number of recipients.

[casync] section

The casync section contains casync-related settings. For more information about using the casync support of RAUC,
refer to RAUC casync Support.

install-args Allows to specify additional arguments that will be passed to casync when installing an update.
For example it can be used to include additional seeds or stores.

storepath Allows to set the path to use as chunk store path for casync to a fixed one. This is useful if your chunk
store is on a dedicated server and will be the same pool for each update you perform. By default, the chunk store
path is derived from the location of the RAUC bundle you install.

tmppath Allows to set the path to use as temporary directory for casync. The temporary directory used by casync
can be specified using the TMPDIR environment variable. It falls back to /var/tmp if unset. If tmppath is set
then RAUC runs casync with TMPDIR sets to that path. By default, the temporary directory is left unset by
RAUC and casync uses its internal default value /var/tmp.

use-desync=<true/false> If this boolean value is set to true, RAUC will use desync instead of casync.
Desync support is still experimental, use with caution.

[autoinstall] section

The auto-install feature allows to configure a path that will be checked upon RAUC service startup. If there is a bundle
placed under this specific path, this bundle will be installed automatically without any further interaction.

This feature is useful for automatically updating the slot RAUC currently runs from, like for asymmetric redundancy
setups where the update is always performed from a dedicated (recovery) slot.

path The full path of the bundle file to check for. If file at path exists, auto-install will be triggered.

[handlers] section

Handlers allow to customize RAUC by placing scripts in the system that RAUC can call for different purposes. All
parameters expect pathnames to the script to be executed. Pathnames are either absolute or relative to the system.conf
file location.

RAUC passes a set of environment variables to handler scripts. See details about using handlers in Custom Handlers
(Interface).

system-info This handler will be called when RAUC starts up, right after loading the system configuration file.
It is used for obtaining further information about the individual system RAUC runs on. The handler script must
print the information to standard output in form of key value pairs. A valid generic key must start with RAUC_
as prefix to be added to the system information; e.g. RAUC_KEY=value.

Some additional special keys that are supported, are:

RAUC_SYSTEM_SERIAL Serial number of the individual board

RAUC_SYSTEM_VARIANT Sets the RAUC system variant

System information is made available to other handlers via environment variables that have the exact same name
and value.

10.1. System Configuration File 95

RAUC Documentation, Release 1.10.1

pre-install This handler will be called right before RAUC starts with the installation. This is after RAUC has
verified and mounted the bundle, thus you can access bundle content.

post-install This handler will be called after a successful installation. The bundle is still mounted at this mo-
ment, thus you could access data in it if required.

bootloader-custom-backend This handler will be called to trigger the following actions:

• get the primary slot

• set the primary slot

• get the boot state

• set the boot state

if a custom bootloader backend is used. See Custom for more details.

[slot.<slot-class>.<idx>] section

Each slot is identified by a section starting with slot. followed by the slot class name, and a slot number. The
<slot-class> name is used in the update manifest to target the correct set of slots. It must not contain any . (dots) as
these are used as hierarchical separator.

device=</path/to/dev> The slot’s device path. This one is mandatory.

type=<type> The type describing the slot. Currently supported <type> values are raw, nand, nor, ubivol,
ubifs, ext4, vfat. See table Slot Type for a more detailed list of these different types. Defaults to raw if
none given.

bootname=<name> Registers the slot for being handled by the bootselection interface with the <name> specified.
The value must be unique across all slots. Only slots without a parent entry can have a bootname. The
actual meaning of the name provided depends on the bootloader implementation used.

parent=<slot> The parent entry is used to bind additional slots to a bootable root file system <slot>. Indirect
parent references are discouraged, but supported for now. This is used together with the bootname to identify
the set of currently active slots, so that the inactive one can be selected as the update target. The parent slot is
referenced using the form <slot-class>.<idx>.

allow-mounted=<true/false> Setting this entry true tells RAUC that the slot may be updated even if it is
already mounted. Such a slot can be updated only by a custom install hook.

readonly=<true/false> Marks the slot as existing but not updatable. May be used for sanity checking or
informative purpose. A readonly slot cannot be a target slot.

install-same=<true/false> If set to false, this will tell RAUC to skip writing slots that already have the
same content as the one that should be installed. Having the ‘same’ content means that the hash value stored
for the target slot and the hash value of the update image are equal. The default value is true here, meaning
that no optimization will be done as this can be unexpected if RAUC is not the only one that potentially alters a
slot’s content.

This replaces the deprecated entries ignore-checksum and force-install-same.

resize=<true/false> If set to true this will tell RAUC to resize the filesystem after having written the image
to this slot. This only has an effect when writing an ext4 file system to an ext4 slot, i.e. if the slot has‘‘type=ext4‘‘
set.

extra-mount-opts=<options> Allows to specify custom mount options that will be passed to the slots
mount call as -o argument value.

96 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

10.2 Manifest

The manifest file located in a RAUC bundle describes the images packed in the bundle and their corresponding target
slot class.

A valid RAUC manifest file must be named manifest.raucm.

[update]
compatible=FooCorp Super BarBazzer
version=2016.08-1

[bundle]
format=verity
verity-hash=3fcb193cb4fd475aa174efa1f1e979b2d649bf7f8224cc97f4413b5ee141a4e9
verity-salt=4b7b8657d03759d387f24fb7bb46891771e1b370fff38c70488e6381d6a10e49
verity-size=24576

[image.rootfs]
filename=rootfs.ext4
size=419430400
sha256=b14c1457dc10469418b4154fef29a90e1ffb4dddd308bf0f2456d436963ef5b3

[image.appfs]
filename=appfs.ext4
size=219430400
sha256=ecf4c031d01cb9bfa9aa5ecfce93efcf9149544bdbf91178d2c2d9d1d24076ca

[update] section

compatible A user-defined compatible string that must match the compatible string of the system the bundle
should be installed on.

version A free version field that can be used to provide and track version information. No checks will be performed
on this version by RAUC itself, although a handler can use this information to reject updates.

description A free-form description field that can be used to provide human-readable bundle information.

build A build id that would typically hold the build date or some build information provided by the bundle creation
environment. This can help to determine the date and origin of the built bundle.

[bundle] section

format Either plain (default), verity or crypt. This selects the format use when wrapping the payload during
bundle creation.

verity-hash The dm-verity root hash over the bundle payload in hexadecimal. RAUC determines this value
automatically, so it should be left unspecified when preparing a manifest for bundle creation.

verity-salt The dm-verity salt over the bundle payload in hexadecimal. RAUC determines this value automati-
cally, so it should be left unspecified when preparing a manifest for bundle creation.

verity-size The size of the dm-verity hash tree. RAUC determines this value automatically, so it should be left
unspecified when preparing a manifest for bundle creation.

crypt-key The encryption key of the dm-crypt. RAUC generates the key automatically when creating a crypt
bundle.

[hooks] section

filename Hook script path name, relative to the bundle content.

10.2. Manifest 97

RAUC Documentation, Release 1.10.1

hooks List of hooks enabled for this bundle. See Install Hooks for more details.

Valid items are: install-check

[handler] section

The handler section refers to the full custom handler that allows to fully replace the default RAUC update process.

Note: This is not to be confused with the [handlers] section from the system.conf which defines e.g. pre- and
post-install handlers!

When the full custom handler is enabled in a bundle, it will be invoked during the bundle installation

• after bundle signature verification

• after slot state and target slots determination logic

• after the pre-install system handler

• before the post-install system handler

Also, the bundle will be mounted at this point and thus all its content is available to the full custom handler. Further
system information is passed by RAUC via environment variables. No built-in slot update will run and no hook will
be executed.

filename Full custom handler path, relative to the bundle content. Having this set will activate the full custom
handler and use the given script/binary instead of the default handling.

args Arguments to pass to the full custom handler, such as args=--setup --verbose

Note: Until RAUC v1.9, these arguments were also implicitly passed to handlers defined in the system.conf.
This behavior was fixed/removed in v1.10. If someone uses this undocumented behavior and still requires this,
please file an issue.

If additional arguments are provided via --handler-args command line argument, these will be appended
to the ones defined in the manifest.

[image.<slot-class>] section

filename Name of the image file (relative to bundle content). RAUC uses the file extension and the slot type to
decide how to extract the image file content to the slot.

sha256 sha256 of image file. RAUC determines this value automatically when creating a bundle, thus it is not
required to set this by hand.

size size of image file. RAUC determines this value automatically when creating a bundle, thus it is not required to
set this by hand.

hooks List of per-slot hooks enabled for this image. See Slot Hooks for more details.

Valid items are: pre-install, install, post-install

adaptive List of ;-separated per-slot adaptive update method names. These methods will add extra information to
the bundle, allowing RAUC to access only the parts of an image which are not yet available locally. Together
with streaming, this reduces the amount of downloaded data.

As the full image is still available in the bundle, older RAUC versions can ignore unsupported adaptive methods.

Currently implemented adaptive methods:

• block-hash-index

98 Chapter 10. Reference

https://rauc.readthedocs.io/en/latest/using.html#full-custom-update
https://github.com/rauc/rauc/issues/new/choose

RAUC Documentation, Release 1.10.1

[meta.<label>] sections

<key> The meta.<label> sections are intended to provide a forwards-compatible way to add metadata to the
manifest which is not interpreted by RAUC in any way. They are accessible via rauc info and the “Inspect-
Bundle” D-Bus API. In future releases, they will be accessible in hooks/handlers, as well.

As they may need to be converted to environment variable names, only alphanumeric characters, - and _ are
allowed in <label> and <key>. - is converted to _ for use as an environment variable name.

10.3 Bundle Formats

RAUC currently supports three bundle formats (plain, verity and crypt) and additional formats could be added
if required. When starting a new project, the verity or crypt formats should be used.

Version 1.4 (released on 2020-06-20) and earlier only supported a single format now named plain, which should
only be used as long as compatibility with older versions is required. For information on how to migrate to the
recommended verity format, see Package-Based Distributions).

The verity format was added to support new use cases like network streaming, for better parallelization of installa-
tion with hash verification and to detect modification of the bundle during installation.

The crypt format is an extension to the verity format that allows full encryption of the bundle.

The bundle format is detected when reading a bundle and checked against the set of allowed formats configured in the
system.conf (using the bundle-formats option).

Note: When creating a bundle without an explicitly configured format, RAUC will warn about defaulting to plain
and recommend to use verity instead. The warning can be silenced by explicitly configuring plain, but note
that this will produce bundles incompatible to 1.4 and earlier due to the added [bundle] section. In that case, we
strongly recommend updating these systems.

10.3.1 plain Format

In this case, a bundle consists of:

• squashfs filesystem containing manifest and images

• detached CMS signature over the squashfs filesystem

• size of the CMS signature

With this format, the signature is checked in a full pass over the squashfs before mounting or accessing it. This makes
it necessary to protect the bundle against modification by untrusted processes. To ensure exclusive access, RAUC
takes ownership of the file (using chown) and uses file leases to detect other open file descriptors.

10.3.2 verity Format

In this case, a bundle consists of:

• squashfs filesystem containing manifest (without verity metadata) and images

• dm-verity hash tree over the squashfs filesystem

• CMS signature over an inline manifest (with verity metadata)

• size of the CMS signature

10.3. Bundle Formats 99

https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html

RAUC Documentation, Release 1.10.1

With this format, the manifest is contained in the CMS signature itself, making it accessible without first hashing the
full squashfs. The manifest contains the additional metadata (root hash, salt and size) necessary to authenticate the
hash tree and in turn each block of the squashfs filesystem.

During installation, the kernel’s verity device mapper target is used on top of the loopback block device to authenticate
each filesystem block as needed.

When using rauc extract (or other commands which need access to the squashfs except install), the squashfs is checked
before accessing it by RAUC itself without using the kernel’s device mapper target, as they are often used by normal
users on their development hosts. It this case, the same mechanism for ensuring exclusive access as with plain bundles
is used.

10.3.3 crypt Format

In this case, a bundle consists of:

• SquashFS filesystem containing manifest (without verity metadata or crypt key) and images, encrypted using
dm-crypt mode aes-cbc-plain64

• dm-verity hash tree over the encrypted SquashFS filesystem

• CMS signature over an inline manifest (with verity metadata and crypt key), encrypted to a set of recipients

• size of the encrypted CMS structure

In addition to the metadata used by the verity format, the manifest for this format contains the AES-256 key required
for decryption of the SquashFS payload. To protect the payload key, the signed manifest is then encrypted.

During installation, the kernel’s crypt and verity device mapper targets are used on top of the loopback or network
block device to authenticate and then decrypt each payload block as needed.

10.3.4 External Signing and PKI

Some industrialization procedures require signing artifacts in a dedicated secure room with restricted access (as Public
Key Infrastructure aka PKI).

For this case rauc extract-signature can extract the bundle signature and rauc replace-signature
can replace the bundle signature with a new one.

As a verity format bundle signature is not a detached CMS, you can easily resign it externally.

Extract the bundle signature
$ rauc extract-signature --keyring ca.cert.pem bundle.raucb extracted-signature.cms
Extract embedded manifest from the verity bundle CMS
$ openssl cms -verify -CAfile ca.cert.pem -out manifest.raucm -inform DER -in
→˓extracted-signature.cms
Or without trust chain verification
$ openssl cms -verify -noverify -out manifest.raucm -inform DER -in extracted-
→˓signature.cms
Sign the manifest with your external PKI (for this example, it was made by an
→˓`openssl` command)
$ openssl cms -sign -signer new-signer.cert.pem -CAfile new-ca-cert.pem -inkey new-
→˓signer.key.pem -nodetach -in manifest.raucm -outform der -out new-signature.cms
Finally replace the bundle signature
$ rauc replace-signature --keyring ca-cert.pem --signing-keyring new-ca-cert.pem
→˓bundle.raucb new-signature.cms new-bundle.raucb

For the plain format bundle signature it’s slightly different, as the signature is detached, it contains just the message
digest. You can use openssl asn1parse for retrieving the message digest in the CMS.

100 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

Find the line which contains `:messageDigest` in `OBJECT` section
and get offset of the next line which contains `OCTET STRING` (1125 in this case)
$ openssl asn1parse -inform der -in extracted-signature.cms | grep -C 3 messageDigest
1093:d=7 hl=2 l= 15 cons: SET
1095:d=8 hl=2 l= 13 prim: UTCTIME :170926142121Z
1110:d=6 hl=2 l= 47 cons: SEQUENCE
1112:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
1123:d=7 hl=2 l= 34 cons: SET
1125:d=8 hl=2 l= 32 prim: OCTET STRING [HEX
→˓DUMP]:F3C783DF3F76D658798A7232255A155BB4E5DD90B0DDFFA57EE01968055161C5
1159:d=6 hl=2 l= 121 cons: SEQUENCE
And extract the digest
$ openssl asn1parse -strparse 1125 -inform DER -in extracted-signature.cms -noout -
→˓out - | xxd -ps -c 32
f3c783df3f76d658798a7232255a155bb4e5dd90b0ddffa57ee01968055161c5

Unfortunately the OpenSSL command line tool does not support signing a pre-existing digest, so you may need to use
the PR openssl/openssl#15348. This is not necessary for a verity bundle format, as its CMS signature directly contains
the manifest.

Another method could be to extract the original binary from the RAUC bundle.

$ BUNDLE_SIZE="$(stat -L -c%s bundle.raucb)"
$ CMS_SIZE="$(printf "%u" "0x$(tail -c "+$(((${BUNDLE_SIZE} - 7)))" bundle.raucb |
→˓xxd -ps)")"
$ CMS_OFFSET=$(((${BUNDLE_SIZE} - ${CMS_SIZE} - 7)))
Extract binary to sign from the bundle
$ dd if=bundle.raucb of=bundle.rauci bs=1 count=$(((${CMS_OFFSET} - 1)))
$ sha256sum bundle.rauci
f3c783df3f76d658798a7232255a155bb4e5dd90b0ddffa57ee01968055161c5 bundle.rauci
Sign the binary with your PKI (for this example, it was made by an `openssl`
→˓command)
$ openssl cms -sign -signer new-signer.cert.pem -CAfile new-ca-cert.pem -inkey new-
→˓signer.key.pem -binary -in bundle.rauci -outform der -out new-signature.cms
Finally replace the bundle signature
$ rauc replace-signature --keyring ca-cert.pem --signing-keyring new-ca-cert.pem
→˓bundle.raucb new-signature.cms new-bundle.raucb

Note: The asn1parse method can also be used for the verity bundle but replacing :messageDigest by :pkcs7-data as
follows

Find the line which contains `:pkcs7-data` in `OBJECT` section
and get offset of the next line which contains `OCTET STRING` (60 in this case)
$ openssl asn1parse -inform der -in extracted-signature.cms
0:d=0 hl=4 l=1918 cons: SEQUENCE
4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
15:d=1 hl=4 l=1903 cons: cont [0]
19:d=2 hl=4 l=1899 cons: SEQUENCE
23:d=3 hl=2 l= 1 prim: INTEGER :01
26:d=3 hl=2 l= 13 cons: SET
28:d=4 hl=2 l= 11 cons: SEQUENCE
30:d=5 hl=2 l= 9 prim: OBJECT :sha256
41:d=3 hl=4 l= 498 cons: SEQUENCE
45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
56:d=4 hl=4 l= 483 cons: cont [0]
60:d=5 hl=4 l= 479 prim: OCTET STRING :[update]

(continues on next page)

10.3. Bundle Formats 101

https://github.com/openssl/openssl/pull/15348

RAUC Documentation, Release 1.10.1

(continued from previous page)

compatible=Test Config
version=2011.03-2

[bundle]
format=verity
verity-hash=931b44c2989432c0fcfcd215ec94384576b973d70530fdc75b6c4c67b0a60297
verity-salt=ea12cb34c699ebbad0ebee8f6aca0049ee991f289011345d9cdb473ba4fdd285
verity-size=4096

[image.rootfs]
sha256=101a4fc5c369a5c89a51a61bcbacedc9016e9510e59a4383f739ef55521f678d
size=8192
filename=rootfs.img

[image.appfs]
sha256=f95c0891937265df18ff962869b78e32148e7e97eab53fad7341536a24242450
size=8192
filename=appfs.img

543:d=3 hl=4 l= 900 cons: cont [0]
547:d=4 hl=4 l= 896 cons: SEQUENCE
551:d=5 hl=4 l= 616 cons: SEQUENCE
555:d=6 hl=2 l= 3 cons: cont [0]
557:d=7 hl=2 l= 1 prim: INTEGER :02
560:d=6 hl=2 l= 1 prim: INTEGER :01
563:d=6 hl=2 l= 13 cons: SEQUENCE
565:d=7 hl=2 l= 9 prim: OBJECT :sha256WithRSAEncryption
[...]
And extract the manifest
$ openssl asn1parse -strparse 60 -inform DER -in extracted-signature.cms -noout -out -
[update]
compatible=Test Config
version=2011.03-2

[bundle]
format=verity
verity-hash=931b44c2989432c0fcfcd215ec94384576b973d70530fdc75b6c4c67b0a60297
verity-salt=ea12cb34c699ebbad0ebee8f6aca0049ee991f289011345d9cdb473ba4fdd285
verity-size=4096

[image.rootfs]
sha256=101a4fc5c369a5c89a51a61bcbacedc9016e9510e59a4383f739ef55521f678d
size=8192
filename=rootfs.img

[image.appfs]
sha256=f95c0891937265df18ff962869b78e32148e7e97eab53fad7341536a24242450
size=8192
filename=appfs.img

10.4 Slot Status

There is some slot specific metadata that are of interest for RAUC, e.g. a hash value of the slot’s content (SHA-256
per default) that is matched against its counterpart of an image inside a bundle to decide if an update of the slot has

102 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

to be performed or can be skipped. These slot metadata can be persisted in one of two ways: either in a slot status
file stored on each slot containing a writable filesystem or in a central status file that lives on a persistent filesystem
untouched by updates. The former is RAUC’s default whereas the latter mechanism is enabled by making use of
the optional key statusfile in the system.conf file. Both are formatted as INI-like key/value files where the slot
information is grouped in a section named [slot] for the case of a per-slot file or in sections termed with the slot name
(e.g. [slot.rootfs.1]) for the central status file:

[slot]
bundle.compatible=FooCorp Super BarBazzer
bundle.version=2016.08-1
bundle.description=Introduction of Galactic Feature XYZ
bundle.build=2016.08.1/imx6/20170324-7
status=ok
sha256=b14c1457dc10469418b4154fef29a90e1ffb4dddd308bf0f2456d436963ef5b3
size=419430400
installed.transaction=dad3289a-7de1-4ad2-931e-fb827edc6496
installed.timestamp=2017-03-27T09:51:13Z
installed.count=3

For a description of sha256 and size keys see this part of the section Manifest. Having the slot’s content’s size
allows to re-calculate the hash via head -c <size> <slot-device> | sha256sum or dd bs=<size>
count=1 if=<slot-device> | sha256sum.

The properties bundle.compatible, bundle.version, bundle.description and bundle.build are
copies of the respective manifest properties. More information can be found in this subsection of section Manifest.

RAUC also stores information about the installation run during which the slot was updated: In installed.
transaction the installation transaction ID is noted, while installed.timestamp notes the time when the
slot’s installation was finished and installed.count reflects the number of updates the slot received so far. Ad-
ditionally RAUC tracks the point in time when a bootable slot is activated in activated.timestamp and the
number of activations in activated.count, see section Manually Switch to a Different Slot. Comparing both
timestamps is useful to decide if an installed slot has ever been activated or if its activation is still pending.

10.5 Command Line Tool

Usage:
rauc [OPTION?] <COMMAND>

Options:
-c, --conf=FILENAME config file
--keyring=PEMFILE keyring file
--mount=PATH mount prefix
-d, --debug enable debug output
--version display version
-h, --help display help and exit

Command-specific help:
rauc <COMMAND> --help

List of rauc commands:
bundle Create a bundle
resign Resign an already signed bundle
convert Convert classic to casync bundle
encrypt Encrypt a crypt bundle
replace-signature Replaces the signature of an already signed bundle

(continues on next page)

10.5. Command Line Tool 103

RAUC Documentation, Release 1.10.1

(continued from previous page)

extract-signature Extract the bundle signature
extract Extract the bundle content
install Install a bundle
info Show bundle information
mount Mount a bundle
service Start RAUC service
status Show status
write-slot Write image to slot and bypass all update logic

Environment variables:
RAUC_KEY_PASSPHRASE Passphrase to use for accessing key files (signing only)
RAUC_PKCS11_MODULE Library filename for PKCS#11 module (signing only)
RAUC_PKCS11_PIN PIN to use for accessing PKCS#11 keys (signing only)

10.6 Custom Handlers (Interface)

Interaction between RAUC and custom handler shell scripts is done using shell variables.

RAUC_SYSTEM_CONFIG Path to the system configuration file (default path is /etc/rauc/system.conf)

RAUC_CURRENT_BOOTNAME Bootname of the slot the system is currently booted from

RAUC_BUNDLE_MOUNT_POINT Path to mounted update bundle, e.g. /mnt/rauc/bundle

RAUC_UPDATE_SOURCE A deprecated alias for RAUC_BUNDLE_MOUNT_POINT

RAUC_MOUNT_PREFIX Provides the path prefix that may be used for RAUC mount points

RAUC_SLOTS An iterator list to loop over all existing slots. Each item in the list is an integer referencing one of the
slots. To get the slot parameters, you have to resolve the per-slot variables (suffixed with <N> placeholder for
the respective slot number).

RAUC_TARGET_SLOTS An iterator list similar to RAUC_SLOTS but only containing slots that were selected as
target slots by the RAUC target slot selection algorithm. You may use this list for safely installing images into
these slots.

RAUC_SLOT_NAME_<N> The name of slot number <N>, e.g. rootfs.0

RAUC_SLOT_CLASS_<N> The class of slot number <N>, e.g. rootfs

RAUC_SLOT_TYPE_<N> The type of slot number <N>, e.g. raw

RAUC_SLOT_DEVICE_<N> The device path of slot number <N>, e.g. /dev/sda1

RAUC_SLOT_BOOTNAME_<N> The bootloader name of slot number <N>, e.g. system0

RAUC_SLOT_PARENT_<N> The name of slot number <N>, empty if none, otherwise name of parent slot

for i in $RAUC_TARGET_SLOTS; do
eval RAUC_SLOT_DEVICE=\$RAUC_SLOT_DEVICE_${i}
eval RAUC_IMAGE_NAME=\$RAUC_IMAGE_NAME_${i}
eval RAUC_IMAGE_DIGEST=\$RAUC_IMAGE_DIGEST_${i}

done

104 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

10.7 Hooks (Interface)

10.7.1 Install Hooks Interface

The following environment variables will be passed to the hook executable:

RAUC_SYSTEM_COMPATIBLE The compatible value set in the system configuration file, e.g. "My First
Product"

RAUC_SYSTEM_VARIANT The system’s variant as obtained by the variant source (refer Handling Board Variants
With a Single Bundle)

RAUC_MF_COMPATIBLE The compatible value provided by the current bundle, e.g. "My Other Product"

RAUC_MF_VERSION The value of the version field as provided by the current bundle, e.g. "V1.2.
1-2020-02-28"

RAUC_MOUNT_PREFIX The global RAUC mount prefix path, e.g. "/run/mount/rauc"

10.7.2 Slot Hooks Interface

The following environment variables will be passed to the hook executable:

RAUC_SYSTEM_COMPATIBLE The compatible value set in the system configuration file, e.g. "My Special
Product"

RAUC_SYSTEM_VARIANT The system’s variant as obtained by the variant source (refer Handling Board Variants
With a Single Bundle)

RAUC_SLOT_NAME The name of the currently installed slot, e.g "rootfs.1".

RAUC_SLOT_STATE The state of the currently installed slot (will always be inactive for slots we install to)

RAUC_SLOT_CLASS The class of the currently installed slot, e.g. "rootfs"

RAUC_SLOT_TYPE The type of the currently installed slot, e.g. "ext4"

RAUC_SLOT_DEVICE The device path of the currently installed slot, e.g. "/dev/mmcblk0p2"

This equals the device= parameter set in the current slot’s system.conf entry and represents the target device
RAUC installs the update to. For an install hook, this is the device the hook executable should write to.

RAUC_SLOT_BOOTNAME For slots with a bootname (those that can be selected by the bootloader), the bootname of
the currently installed slot, e.g. "system1" For slots with a parent, the parent’s bootname is used. Note that
in many cases, it’s better to use the explicit RAUC_SLOT_NAME to select different behaviour in the hook, than
to rely indirectly on the bootname.

RAUC_SLOT_PARENT If set, the parent of the currently installed slot, e.g. "rootfs.1"

RAUC_SLOT_MOUNT_POINT If available, the mount point of the currently installed slot, e.g. "/run/mount/
rauc/rootfs.1"

For mountable slots, i.e. those with a file system type, RAUC will attempt to automatically mount the slot if a
pre-install or post-install hook is given and provide the slot’s current mount point under this env variable.

RAUC_IMAGE_NAME If set, the file name of the image currently to be installed, e.g. "product-rootfs.img"

RAUC_IMAGE_SIZE If set, the size of the image currently to be installed, e.g. "82628"

RAUC_IMAGE_DIGEST If set, the digest of the image currently to be installed, e.g.
"e29364a81c542755fd5b2c2461cd12b0610b67ceacabce41c102bba4202f2b43"

RAUC_IMAGE_CLASS If set, the target class of the image currently to be installed, e.g. "rootfs"

10.7. Hooks (Interface) 105

RAUC Documentation, Release 1.10.1

RAUC_MOUNT_PREFIX The global RAUC mount prefix path, e.g. "/run/mount/rauc"

RAUC_BOOT_PARTITION_ACTIVATING The to be activated boot partition (0 or 1). boot-mbr-switch,
boot-gpt-switch, boot-emmc slot types only.

RAUC_BOOT_PARTITION_START The absolute partition offset of the to be activated boot partition in bytes.
boot-mbr-switch and boot-gpt-switch slot types only.

RAUC_BOOT_PARTITION_SIZE The partition size of the to be activated boot partition in bytes.
boot-mbr-switch and boot-gpt-switch slot types only.

RAUC_BOOT_REGION_START The absolute offset of the boot region in bytes. boot-raw-fallback slot type
only.

RAUC_BOOT_REGION_SIZE The size of the boot region in bytes. Both halves in the region will be written by
RAUC. boot-raw-fallback slot type only.

10.8 D-Bus API

RAUC provides a D-Bus API that allows other applications to easily communicate with RAUC for installing new
firmware.

de.pengutronix.rauc.Installer

10.8.1 Methods

InstallBundle (IN s source, IN a{sv} args);

Install (IN s source); (deprecated)

Info (IN s bundle, s compatible, s version);

InspectBundle (IN s source, IN a{sv} args, a{sv} info);

Mark (IN s state, IN s slot_identifier, s slot_name, s message);

GetSlotStatus (a(sa{sv}) slot_status_array);

GetPrimary s primary);

10.8.2 Signals

Completed (i result);

10.8.3 Properties

Operation readable s

LastError readable s

Progress readable (isi)

Compatible readable s

Variant readable s

BootSlot readable s

106 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

10.8.4 Description

10.8.5 Method Details

The InstallBundle() Method

de.pengutronix.rauc.Installer.InstallBundle()
InstallBundle (IN s source, IN a{sv} args);

Triggers the installation of a bundle. This method call is non-blocking. After completion, the “Completed” signal will
be emitted.

IN s source: Path or URL to the bundle that should be installed

IN a{sv} args: Arguments to pass to installation

Currently supported:

STRING ‘ignore-compatible’, VARIANT ‘b’ <true/false> Ignore the default compatible check
for forcing installation of bundles on platforms that a compatible not matching the one of the
bundle to be installed

STRING ‘transaction-id’, VARIANT ‘s’ <UUID> Set UUID to use for identifying the (installa-
tion) transaction. If not given, RAUC will generate a random one.

STRING ‘tls-cert’, VARIANT ‘s’ <filename/pkcs11-url> Use the provided certificate for TLS
client authentication

STRING ‘tls-key’, VARIANT ‘s’ <filename/pkcs11-url> Use the provided private key for TLS
client authentication

STRING ‘tls-ca’, VARIANT ‘s’ <filename/pkcs11-url> Use the provided certificate to authenti-
cate the server (instead of the system wide store)

STRING ‘http-headers’, VARIANT ‘as’ <array of strings> Add the provided headers to every
request (i.e. for bearer tokens)

STRING ‘tls-no-verify’, VARIANT ‘b’ <true/false> Ignore verification errors for the server cer-
tificate

The Install() Method

Note: This method is deprecated.

de.pengutronix.rauc.Installer.Install()
Install (IN s source);

Triggers the installation of a bundle. This method call is non-blocking. After completion, the “Completed” signal will
be emitted.

IN s source: Path to bundle to be installed

The Info() Method

10.8. D-Bus API 107

RAUC Documentation, Release 1.10.1

Note: This method is deprecated. Use InspectBundle() instead.

de.pengutronix.rauc.Installer.Info()
Info (IN s bundle, s compatible, s version);

Provides bundle info.

IN s bundle: Path to bundle information should be shown

s compatible: Compatible of bundle

s version: Version string of bundle

The InspectBundle() Method

de.pengutronix.rauc.Installer.InspectBundle()
InspectBundle (IN s bundle, IN a{sv} args, a{sv} info);

Provides bundle info. It uses the same nested dictionary structure as rauc info --output-format=json-2.

IN s bundle: Path or URL to the bundle that should be queried for information

IN a{sv} args: Arguments to pass to information

Currently supported:

STRING ‘tls-cert’, VARIANT ‘s’ <filename/pkcs11-url> Use the provided certificate for TLS
client authentication

STRING ‘tls-key’, VARIANT ‘s’ <filename/pkcs11-url> Use the provided private key for TLS
client authentication

STRING ‘tls-ca’, VARIANT ‘s’ <filename/pkcs11-url> Use the provided certificate to authenti-
cate the server (instead of the system wide store)

STRING ‘http-headers’, VARIANT ‘as’ <array of strings> Add the provided headers to every
request (i.e. for bearer tokens)

STRING ‘tls-no-verify’, VARIANT ‘b’ <true/false> Ignore verification errors for the server cer-
tificate

a{sv} info: Bundle info

STRING ‘manifest-hash’, VARIANT ‘s’ <hash> A SHA256 hash sum over the manifest content

STRING ‘update’, VARIANT ‘v’ <update-dict> The bundle’s [update] section content

STRING ‘compatible’, VARIANT ‘s’ <compatible> The compatible noted in the
manifest

STRING ‘version’, VARIANT ‘s’ <version> The version noted in the manifest

STRING ‘description’, VARIANT ‘s’ <description> The description text noted in
the manifest

STRING ‘build’, VARIANT ‘s’ <build> The build ID noted in the manifest

STRING ‘bundle’, VARIANT ‘v’ <bundle-dict> The bundle’s [bundle] section content

STRING ‘format’, VARIANT ‘s’ <format> The bundle format (i.e. plain, verity or
crypt)

108 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

STRING ‘verity-size’, VARIANT ‘t’ <size> The size of the verity-protected payload

STRING ‘verity-salt’, VARIANT ‘s’ <salt> The salt used by the verity-protected
payload

STRING ‘verity-hash’, VARIANT ‘s’ <hash> The root hash of the verity-protected
payload

STRING ‘hooks’, VARIANT ‘v’ <hooks-dict> The bundle’s [hooks] section content

STRING ‘filename’, VARIANT ‘s’ <filename> The hook filename

STRING ‘hooks’, VARIANT ‘as’ <hooks> An array of enabled hooks (i.e.
install-check)

STRING ‘handler’, VARIANT ‘v’ <handler-dict> The bundle’s [handler] section content

STRING ‘filename’, VARIANT ‘s’ <filename> The handler filename

STRING ‘args’, VARIANT ‘s’ <args> Optional arguments to the handler

STRING ‘images’, VARIANT ‘v’ <images-list> The bundle’s [images.*] section content, as
a list of dictionaries

STRING ‘slot-class’, VARIANT ‘s’ <slot-class> The slot class this image is intended
for

STRING ‘variant’, VARIANT ‘s’ <variant> The variant name, if used

STRING ‘filename’, VARIANT ‘s’ <filename> The image’s filename

STRING ‘checksum’, VARIANT ‘s’ <checksum> The original image’s SHA256
hash

STRING ‘size’, VARIANT ‘t’ <slot-class> The original image’s size

STRING ‘hooks’, VARIANT ‘as’ <hooks> An array of enabled hooks (i.e.
pre-install, install or post-install)

STRING ‘adaptive’, VARIANT ‘as’ <adaptive-methods> An array of enabled
adaptive methods (i.e. block-hash-index)

STRING ‘meta’, VARIANT ‘v’ <meta-dict> The bundle’s [meta.*] section content

STRING ‘<group>’, VARIANT ‘v’ <meta-group-dict> The [meta.<group>]
section content

STRING ‘<key>’, VARIANT ‘s’ <value> A key-value pair from the [meta.
<group>] section

The Mark() Method

de.pengutronix.rauc.Installer.Mark()
Mark (IN s state, IN s slot_identifier, s slot_name, s message);

Keeps a slot bootable (state == “good”), makes it unbootable (state == “bad”) or explicitly activates it for the next boot
(state == “active”).

IN s state: Operation to perform (one out of “good”, “bad” or “active”)

IN s slot_identifier: Can be “booted”, “other” or <SLOT_NAME> (e.g. “rootfs.1”)

s slot_name: Name of the slot which has ultimately been marked

s message: Message describing what has been done successfully (e.g. “activated slot rootfs.0”)

10.8. D-Bus API 109

RAUC Documentation, Release 1.10.1

The GetSlotStatus() Method

de.pengutronix.rauc.Installer.GetSlotStatus()
GetSlotStatus (a(sa{sv}) slot_status_array);

Access method to get all slots’ status.

a(sa{sv}) slot_status_array: Array of (slotname, dict) tuples with each dictionary representing the status of the cor-
responding slot

The GetPrimary() Method

de.pengutronix.rauc.Installer.GetPrimary()
GetPrimary (s primary);

Get the current primary slot.

10.8.6 Signal Details

The “Completed” Signal

de.pengutronix.rauc.Installer::Completed
Completed (i result);

This signal is emitted when an installation completed, either successfully or with an error.

i result: return code (0 for success)

10.8.7 Property Details

The “Operation” Property

de.pengutronix.rauc.Installer:Operation
Operation readable s

Represents the current (global) operation RAUC performs. Possible values are idle or installing.

The “LastError” Property

de.pengutronix.rauc.Installer:LastError
LastError readable s

Holds the last message of the last error that occurred.

The “Progress” Property

de.pengutronix.rauc.Installer:Progress
Progress readable (isi)

110 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

Provides installation progress information in the form

(percentage, message, nesting depth)

Refer Processing Progress Data section.

The “Compatible” Property

de.pengutronix.rauc.Installer:Compatible
Compatible readable s

Represents the system’s compatible. This can be used to check for usable bundles.

The “Variant” Property

de.pengutronix.rauc.Installer:Variant
Variant readable s

Represents the system’s variant. This can be used to select parts of an bundle.

The “BootSlot” Property

de.pengutronix.rauc.Installer:BootSlot
BootSlot readable s

Contains the information RAUC uses to identify the booted slot. It is derived from the kernel command line. This can
either be the slot name (e.g. rauc.slot=rootfs.0) or the root device path (e.g. root=PARTUUID=0815). If
the root= kernel command line option is used, the symlink is resolved to the block device (e.g. /dev/mmcblk0p1).

10.9 RAUC’s Basic Update Procedure

Performing an update using the default RAUC mechanism will work as follows:

1. Startup, read system configuration

2. Determine slot states

3. Verify bundle signature (reject if invalid)

4. Mount bundle (SquashFS)

5. Parse and verify manifest

6. Determine target install group

A. Execute pre install handler (optional)

7. Verify bundle compatible against system compatible (reject if not matching)

8. Mark target slots as non-bootable for bootloader

9. Iterate over each image specified in the manifest

A. Determine update handler (based on image and slot type)

B. Try to mount slot and read slot status information

10.9. RAUC’s Basic Update Procedure 111

RAUC Documentation, Release 1.10.1

a. Skip update if new image hash matches hash of installed one

C. Perform slot update (image copy / mkfs+tar extract / . . .)

D. Try to write slot status information

10. Mark target slots as new primary boot source for the bootloader

A. Execute post install handler (optional)

11. Unmount bundle

12. Terminate successfully if no error occurred

10.10 Bootloader Interaction

RAUC comes with a generic interface for interacting with the bootloader. It handles all slots that have a bootname
property set.

It provides two base functions:

1) Setting state ‘good’ or ‘bad’, reflected by API routine r_boot_set_state() and command line tool option rauc
status mark <good/bad>

2) Marking a slot ‘primary’, reflected by API routine r_boot_set_primary() and command line tool option rauc
status mark-active

The default flow of how they will be called during the installation of a new bundle (on Slot ‘A’) looks as follows:

The aim of setting state ‘bad’ is to disable a slot in a way that the bootloader will not select it for booting anymore. As
shown above this is either the case before an installation to make the update atomic from the bootloader’s perspective,
or optionally after the installation and a reboot into the new system, when a service detects that the system is in an
unusable state. This potentially allows falling back to a working system.

The aim of setting a slot ‘primary’ is to let the bootloader select this slot upon next reboot in case of having completed
the installation successfully. An alternative to directly marking a slot primary after installation is to manually mark it
primary at a later point in time, e.g. to let a complete set of devices change their software revision at the same time.

Setting the slot ‘good’ is relevant for the first boot but for all subsequent boots, too. In most cases, this interaction
with the bootloader is required by the mechanism that enables fallback capability; rebooting a system one or several
times without calling rauc status mark-good will let the bootloader boot an alternative system or abort boot operation
(depending on configuration). Usually, bootloaders implement this fallback mechanism by some kind of counters they
maintain and decrease upon each boot. In these cases marking good means resetting these counters.

A normal reboot of the system will look as follows:

Some bootloaders do not require explicitly setting state ‘good’ as they are able to differentiate between a POR and a
watchdog reset, for example.

What the high-level functions described above actually do mainly depends on the underlying bootloader used and
the capabilities it provides. Below is a short description about behavior of each bootloader interface currently imple-
mented:

112 Chapter 10. Reference

RAUC Documentation, Release 1.10.1

10.10.1 U-Boot

The U-Boot implementation assumes to have variables BOOT_ORDER and BOOT_x_LEFT handled by the bootloader
scripting.

state bad Sets the BOOT_x_LEFT variable of the slot to 0 and removes it from the BOOT_ORDER list

state good Sets the BOOT_x_LEFT variable back to its default value (3).

primary Moves the slot from its current position in the list in BOOT_ORDER to the first place and sets
BOOT_x_LEFT to its initial value (3). If BOOT_ORDER was unset before, it generates a new list
of all slots known to RAUC with the one to activate at the first position.

10.10.2 Barebox

The barebox implementation assumes using barebox bootchooser.

state bad Sets both the bootstate.systemX.priority and bootstate.systemX.remaining_attempts to 0.

state good Sets the bootstate.systemX.remaining_attempts to its default value (3).

primary Sets bootstate.systemX.priority to 20 and all other priorities that were non-zero before to 10. It
also sets bootstate.systemX.remaining_attempts to its initial value (3).

10.10.3 GRUB

state bad Sets slot x_OK to 0 and resets x_TRY to 0.

state good Sets slot x_OK to 1 and resets x_TRY to 0.

primary Sets slot x_OK to 1 and resets x_TRY to 0. Sets ORDER to contain slot x as first element and
all other after.

10.10.4 EFI

state bad Removes the slot from BootOrder

state good Prepends the slot to the BootOrder list. This behaves slightly different than the other imple-
mentations because we use BootNext for allowing setting primary with an initial fallback option.
Setting state good is then used to persist this.

primary Sets the slot as BootNext by default. This will make the slot being booted upon next reboot
only!

The behavior is different when efi-use-bootnext is set to false. Then this prepends the
slot to the BootOrder list as described for ‘state good’.

Note: EFI implementations differ in how they handle new or unbootable targets etc. It may also depend on the actual
implementation if EFI variable writing is atomic or not. Thus make sure your EFI works as expected and required.

10.10. Bootloader Interaction 113

https://barebox.org/doc/latest/user/bootchooser.html

RAUC Documentation, Release 1.10.1

114 Chapter 10. Reference

CHAPTER 11

Terminology

Update Controller This controls the update process and can be started on demand or run as a daemon.

Update Handler The handler performs the actual update installation. A default implementation is provided with the
update controller and can be overridden in the update manifest.

Update Bundle The bundle is a single file containing an update. It consists of a squashfs with an appended crypto-
graphic signature. It contains the update manifest, one or more images and optionally an update handler.

Update Manifest This contains information about update compatibility, image hashes and references the optional
handler. It is either contained in a bundle or downloaded individually over the network.

Slot Slots are possible targets for (parts of) updates. Usually they are partitions on a SD/eMMC, UBI volumes on
NAND/NOR flash or raw block devices. For filesystem slots, the controller stores status information in a file in
that filesystem.

Slot Class All slots with the same purpose (such as rootfs, appfs) belong to the same slot class. Only one slot per
class can be active at runtime.

Install Group If a system consists of more than only the root file system, additional slots are bound to one of the root
file system slots. They form an install group. An update can be applied only to members of the same group.

System Configuration This configures the controller and contains compatibility information and slot definitions.
For now, this file is shipped as part of the root filesystem.

Boot Chooser The bootloader component that determines which slot to boot from.

Recovery System A non-updatable initial (factory default) system, capable of running the update service to recover
the system if all other slots are damaged.

115

RAUC Documentation, Release 1.10.1

116 Chapter 11. Terminology

CHAPTER 12

Contributing

Thank you for thinking about contributing to RAUC! Some different backgrounds and use-cases are essential for
making RAUC work well for all users.

The following should help you with submitting your changes, but don’t let these guidelines keep you from opening a
pull request. If in doubt, we’d prefer to see the code earlier as a work-in-progress PR and help you with the submission
process.

12.1 Workflow

• Changes should be submitted via a GitHub pull request.

• Try to limit each commit to a single conceptual change.

• Add a signed-off-by line to your commits according to the Developer’s Certificate of Origin (see below).

• Check that the tests still work before submitting the pull request. Also check the CI’s feedback on the pull
request after submission.

• When adding new features, please also add the corresponding documentation and test code.

• If your change affects backward compatibility, describe the necessary changes in the commit message and update
the examples where needed.

12.2 Code

• Basically follow the Linux kernel coding style

12.3 Documentation

• Use semantic linefeeds in .rst files.

117

https://github.com/rauc/rauc/pulls
http://rhodesmill.org/brandon/2012/one-sentence-per-line/

RAUC Documentation, Release 1.10.1

12.4 Check Scripts & Test Suite

To ensure we do not break existing behavior and detect potential bugs, RAUC runs a test suite consisting of several
components. Some of them only run in CI, but most of them can be executed locally. When working on a new feature
or fixing a bug, please make sure these tests succeed.

12.4.1 Code Style - uncrustify

To maintain a consistent code style, we use the uncrustify code beautifier that also runs in the CI loop.

To make sure your changes match the expected code style, run:

./uncrustify.sh

from the RAUC source code’s root directory. It will adapt style where necessary.

12.4.2 CLI Tests - sharness

For high-level tests of the RAUC command line interface we use the sharness shell library.

You can run these checks manually by executing:

cd test
./rauc.t

from the RAUC source code’s root directory but they will also be triggered by the general test suite run (see below).
If you add or change subcommands or arguments of the CLI tool, make sure these tests succeed and extend them if
possible. As many of these tests need root permissions, we recommend running them using the qemu-test helper
below.

12.4.3 glib Unit Tests - gtest

For testing the different C modules of RAUC’s source code, we use the glib Test Framework.

All tests reside in the test/ folder and are named according to the module they test (test/bundle.c contains
tests for src/bundle.c).

To build and run an individual test, do:

make test/bundle.test
./test/bundle.test

To run all tests, run:

make check

This will also run the sharness CLI tests mentioned above.

Note: Although some of the tests need to run as root, do NOT use ‘sudo’, but use our qemu-test helper instead!

118 Chapter 12. Contributing

https://github.com/uncrustify/uncrustify
https://github.com/chriscool/sharness
https://developer.gnome.org/glib/stable/glib-Testing.html

RAUC Documentation, Release 1.10.1

12.4.4 QEMU Test Runner - qemu-test

As many of the unit tests require root privileges and thus could potentially damage your host system, we provide a
QEMU-based test environment where one can safely run all checks in a virtual environment.

To run the entire test suite, type:

./qemu-test

For optimal performance, run:

./qemu-test passthrough

which will pass through your host’s CPU features to the guest.

For interactive access to the test environment, use:

./qemu-test shell

12.5 Developer’s Certificate of Origin

RAUC uses the Developer’s Certificate of Origin 1.1 with the same process as used for the Linux kernel:

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I have the right to submit it under the
open source license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is covered under
an appropriate open source license and I have the right under that license to submit that work with
modifications, whether created in whole or in part by me, under the same open source license
(unless I am permitted to submit under a different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and
I have not modified it.

(d) I understand and agree that this project and the contribution are public and that a record of the
contribution (including all personal information I submit with it, including my sign-off) is main-
tained indefinitely and may be redistributed consistent with this project or the open source license(s)
involved.

Then you just add a line (using git commit -s) saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

12.5. Developer’s Certificate of Origin 119

https://developercertificate.org/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
mailto:random@developer.example.org

RAUC Documentation, Release 1.10.1

120 Chapter 12. Contributing

CHAPTER 13

Changes in RAUC

13.1 Release 1.10.1 (released Aug 3, 2023)

Bug fixes

• Fix variant configuration via the system config. In 1.10, only variants set via the system info handler worked
correctly. (by Hans Christian Lonstad)

• Fix compatibility with efibootmgr version 18. (by David Runge)

• Fix the help text of the --with-streaming_user configure option.

• Fix some minor memory leaks discovered with address sanitizer.

• Fix D-Bus default directories when using meson.

• Fix build against OpenSSL installed in non-standard locations when using autotools.

Testing

• Enable address sanitizer for install tests.

Documentation

• Improve understandability, fix typos and missing words. (by Roland Hieber)

• Document an alternative to meson compile -C build for old meson versions.

• Document possible filesystem incompatibility with ext4 in the FAQ.

Contributions from: David Runge, Enrico Jörns, Hans Christian Lonstad, Jan Lübbe, Roland Hieber, Stephan Wurm,
Ulrich Ölmann

121

RAUC Documentation, Release 1.10.1

13.2 Release 1.10 (released Jun 23, 2023)

Enhancements

• Print sizes in rauc info also in human-readable form.

• Add FTPS support for bundle download (only for use with casync, not for streaming). (by Christian Meusel)

• Improve progress granularity to provide more realistic weighting of substeps.

• Add fine-grained progress updates during image copying and archive extraction. (based on work by Lars
Poeschel)

• Return manifest meta data in rauc info and via the InspectBundle D-Bus method.

• Add new ‘json-2’ output format for rauc info that matches the InspectBundle D-Bus method structure.

• Improve error message for failed boot slot detection.

• Allow exFAT as a local filesystem for plain bundles. (by Stefan Wahren)

• Add optional pre-check for verity bundles. This is useful if the same bundle needs to be transferred and installed
to multiple systems in sync. (by Christian Hitz)

• Add support for custom variables in the system-info handler and pass them to other handlers.

• Show a warning during bundle creation if no format is specified in the manifest. This should hopefully encourage
migration to the verity format.

• Introduce an installation transaction UUID, which is stored in the slot status. This can be used to infer which
slots have been updated by the same transaction. In a future release, this will be useful to correlate log messages.

• Use a shorter connect timeout for streaming to avoid waiting for 25 minutes.

Bug fixes

• Fix some issues in the meson build support:

– missing man page installation

– missing dependency for tests on D-Bus header generation

– missing executable bit for D-Bus wrapper rauc-service.sh

• Fix external mount point detection which could have caused a number of mounts to be not detected properly.

• Fix double-initialization of context.

• Fix memory leaks (mainly in the test suite).

• Fix a confusing error message when using rauc extract with an existing output directory.

• Fix building with musl by not using off64_t with _FILE_OFFSET_BITS=64. (by Christian Hohnstaedt)

• Fix unintentional forwarding of full custom handler args (defined in the manifest) to the system.conf-defined
handlers.

• Re-add missing --key argument (used to set the decryption key) to help and man page.

122 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

Testing

• Add Debian ‘buster’, ‘bullseye’ and ‘testing’ to test stable test matrix.

• Add test run with address sanitizer. This currently uses a large part of the existing test suite.

Code

• Refactor installation handling with the introduction of installation plans. This also allows testing for invalid
image/slot combinations earlier.

• Add a helper for atomic symlink updates.

• Refactor slot state determination and split from mount point updates. Let slot state determination happen earlier
and only once.

• Require at least glib 2.56.0 for g_ptr_array_find and g_autolist. Debian buster, Ubuntu bionic and
Yocto dunfell have newer versions already.

• Refactor boot slot marking.

• Consistently initialize variables to avoid static checker warning. (by b4yuan)

Documentation

• Document some Linux distributions which provide RAUC packages.

• Document deprecation of the statusfile option. (by Ulrich Ölmann)

• Extend and fix documentation for the full custom handler.

Contributions from: Christian Hitz, Christian Hohnstaedt, Christian Meusel, Enrico Jörns, Jan Lübbe, Lars Poeschel,
René Fischer, Stefan Wahren, Ulrich Ölmann, b4yuan

13.3 Release 1.9 (released Mar 3, 2023)

Enhancements

• Add new InspectBundle D-Bus method, which takes the same bundle access options as the existing InstallBun-
dle method. This makes it possible to inspect bundles stored on HTTP servers which need authentication. It
returns information from the manifest as a nested dictionary (for now, this is only compatible, version,
description and build), but can be extended as needed. (by Stefan Ursella)

• Add support for loading and storing metadata entries in the manifest. They are not yet exposed to the user.

• Add a manifest hash value and expose it via rauc info and rauc status. This can be used to identify a
specific bundle.

• Support configurable boot attempt counters for barebox (using boot-attempts in the system.conf).

• Add meson as an alternative build system. We intend to drop autotools in 1.10, unless there are good reasons to
keep it for longer. As the tar archive generated by meson does not contain a configure script, you may need to
run autogen.sh to generate it. To simplify the migration, we also provide a -autotools archive variant which
is generated using autotool’s make dist (and does not contain the meson build support).

• Abort earlier if the image is too large for the target slot.

• Add warnings for some configuration issues when using adaptive updates.

13.3. Release 1.9 (released Mar 3, 2023) 123

RAUC Documentation, Release 1.10.1

Bug fixes

• Fix a NULL dereference error caused by images larger than the target slot. (by Kevin Hsieh)

• Fix compatibility with libcurl when built without proxy support. (by Christian Meusel)

• Do not invoke any target-related context setup steps if no config is required. This avoids unnecessary checks
and removes the misleading messages about unresolved paths.

• Fix number format for bootchooser when using U-Boot. (by Christian Meusel)

• Fix handling of partitioned loop devices, which caused incorrect aborts during installation.

• Fix error handling when attempting to encrypt plain bundles.

Testing

• Improve robustness of dm-verity/-crypt test setup.

• Enable scan-build for tests in GitHub Actions.

• Handle floating point comparisons in tests better.

• Add a GitHub Actions workflow for CodeQL scanning as a replacement for LGTM.

• Run the cross architecture tests on Debian bullseye instead of buster.

Code

• Move the -intermediate option to the subcommand level and update the manual page.

• Improve error handling for invalid boot-attempts configuration.

• Fix some minor memory leaks.

Documentation

• Document our approach to bundle compatibility.

• Add links to public example integrations of RAUC into different build systems and boards.

• Add an issue template and a SUPPORT.rst file.

• Improve the documentation on slot skipping with regard to streaming.

• Update README.rst with new features.

Contributions from: Christian Meusel, Enrico Jörns, Jan Lübbe, Kevin Hsieh, Stefan Ursella, Ulrich Ölmann, Uwe
Kleine-König

13.4 Release 1.8 (released Sep 30, 2022)

Enhancements

• Implement adaptive image updates based on block hash indices. This works by adding an index file containing
the hashes of each 4kiB image block in the image to the bundle and then using this to check whether a block
is available locally during installation. If that’s the case, RAUC doesn’t need to download this block. Together

124 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

with streaming, this means that only a small part of the bundle needs to be downloaded as long as the changes
are localized. See the documentation for details.

• Add a slot type which provides atomic bootloader updates for SoCs (like the Rockchip RK3568) which search
for a valid image at multiple fixed offsets. (by Matthias Fend) See the documentation for details.

• Add a configuration option for additional arguments to pass to casync extract. (by Ludovico de Nittis)

• Add initial support for desync (an alternative casync implementation). (by Ludovico de Nittis)

• Add support for a RAUC data-directory on a shared partition. Unless otherwise configured, this is also used to
store the central slot status data. See the documentation for details.

• Allow setting a passphrase for encrypted PEM files via the environment (RAUC_KEY_PASSPHRASE). (by
Marc Kleine-Budde)

• Ignore meta.<label> sections in the manifest. The meta.<label> sections are intended to provide a
forwards-compatible way to add data to the manifest which is not interpreted by RAUC in any way. Currently,
they are just ignored when reading a manifest. In future releases, they will be accessible via rauc info, the
D-Bus API and in hooks/handlers.

Bug fixes

• Avoid retrying on HTTP 404 errors during streaming.

• Improve error handling during loop device block size configuration. (by Ahmad Fatoum)

• Fix handling of empty partitions for boot-mbr-switch slots.

• Do not attempt to take ownership of plain bundles if running as non-root.

• Unmount seed slots if casync fails during installation. (by Jonas Licht)

• Add missing test files to the dist .tar.xz. (by Uwe Kleine-König)

Testing

• Refactor the statistics code to make it useful for testing as well.

• Replace Ubuntu 21.10 test container with 22.04

• Add more tests for casync conversion and installation.

Code

• Log error messages from CURL for failed streaming requests.

• Add doctype to D-Bus XML specification. (by Morgan Bengtsson)

• Improve error messages related to bootloader communication.

• Improve error reporting for directory creation failures.

Documentation

• Document that the required kernel features can be configured as modules as well.

• Document how to load and store the GRUB environment from a shared partition.

• Document some best practices regarding storage partitioning.

13.4. Release 1.8 (released Sep 30, 2022) 125

RAUC Documentation, Release 1.10.1

• Explain differences between casync and streaming & adaptive updates.

Contributions from: Ahmad Fatoum, Enrico Jörns, Jan Lübbe, Jonas Licht, Ludovico de Nittis, Marc Kleine-Budde,
Marcus Hoffmann, Matthias Fend, Morgan Bengtsson, Ulrich Ölmann, Uwe Kleine-König

13.5 Release 1.7 (released Jun 3, 2022)

Enhancements

• Add support for streaming installation from a HTTP(S) server for bundles in verity and crypt formats.
This avoids the need for a temporary bundle storage location and prepares for more efficient adaptive (originally
incremental) updates. See the documentation for details.

• Add support for bundle encryption (crypt format). This is useful when bundles contain confidential data and
are not otherwise protected during transport (for example, via HTTP, unauthenticated HTTPS or USB storage).
See the documentation for details.

• Optionally allow verification with partial chains. If enabled, RAUC will also treat intermediate certificates in
the keyring as trust-anchors, in addition to self-signed root CA certificates. This makes it possible to trust only
one (or more) sub-tree(s) in a larger PKI. See the documentation for details.

• Divert log messages to stderr, which is useful for machine readable output (rauc status
--output-format=json). This is only enabled when built with glib 2.68 or newer. (by Ludovico de
Nittis)

• Only allow the root step to report 100% progress. (by Steven Rau)

• Add the --trust-environment option to rauc extract and rauc extract-signature.

• Improve the error message printed on compatible mismatch.

Bug fixes

• Don’t enforce bundle exclusivity if the environment is trusted. (by Ludovico de Nittis)

• Clean up error handling for ‘rauc status’.

• Fix some memory leaks. (by Zygmunt Krynicki)

• Fix unintentional removal of existing bundles on error.

• Fix build error when PRIu64 is not defined. (by Fabrice Fontaine)

Testing

• Make some tests conditional on the existence of the openssl binary.

• Access rauc.io instead of example.com.

• Explicitly use Python 3 in coverity checks. (by Thorsten Scherer)

• Add build tests on Ubuntu 21.10.

126 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

Code

• Add some missing files to the dist tar.gz. (by Uwe Kleine-König)

• Change minimum glib version from 2.49.3 to 2.50, allowing use of g_autoptr with the auto-generated DBus
code.

• Use g_autofree/g_autoptr in more places.

• Use more specific error codes for device mapper error reporting.

• Prepare for incremental methods by adding an optional per-image manifest option.

Note: Since the release of 1.7, it turned out that the name ‘incremental’ for this functionality is confusing. Ac-
cordingly, we decided to rename it to ‘adaptive’ for 1.8 and accept the downside of not being able to benefit from
compatibility with 1.7.

Documentation

• Fix some broken internal links. (by Thorsten Scherer)

• Mention Buildroot support for RAUC. (by Thomas Petazzoni)

• Fix some typos. (by Bastian Krause and Michael Riesch)

• Clean up some inconsistencies between README and main documentation.

• Fix misleading rescue slot example. (by Sean Nyekjaer)

• Fix broken links to external pages. (by Bastian Krause)

Contributions from: Bastian Krause, Fabrice Fontaine, Ludovico de Nittis, Michael Riesch, Sean Nyekjaer, Steven
Rau, Thomas Petazzoni, Thorsten Scherer, Uwe Kleine-König, Zygmunt Krynicki

13.6 Release 1.6 (released Feb 9, 2022)

Enhancements

• Added support for NOR flash devices. (by Ladislav Michl)

• Added support for configuring the number of boot attempts for U-Boot. (by Daniel Mack)

• Implemented passing the image size to hooks as RAUC_IMAGE_SIZE. (by Marcel Hellwig)

• Added support to use systemd.verity_root_data= to find the booted slot. (by Arnaud Rebillout)

• Implemented passing additional information to hooks for the boot-* slot types. (by Bastian Krause)

• Added support for extracting and replacing the bundle signature, which is useful for scenarios with strict limita-
tions on how HSMs can be used. (by Jean-Pierre Geslin)

• Implemented a rauc mount command to allow inspection of bundles without extraction.

• Allowed omitting the image filename when using the install slot hook.

• Implemented support for extracting tar archives to jffs2 slots. (by Holger Assmann)

• Added option for the resign and info commands to ignore expired certificates (--no-check-time). (by
Michael Heimpold)

13.6. Release 1.6 (released Feb 9, 2022) 127

RAUC Documentation, Release 1.10.1

• Added option for the convert command to disable the concurrent access checks for plain bundles
(--trust-environment).

• Simplified usage of compressed SquashFS images with extensions as created by OpenEmbedded. (by Omer
Akram)

• Improved checks of the manifest contents to avoid common misconfigurations.

• Improved handling of system.conf loading according to the use-cases of the different commands.

Bug fixes

• Fixed installing plain bundles from ZFS partitions. (by Daniel Mack)

• Fixed the order of pre-/post-install hooks for the boot-* slot types. (by Bastian Krause)

• Fixed generation of VFAT filesystem labels which were rejected by newer mkfs.vfat.

• Added checking of slot types configured in system.conf.

• Fixed installing plain bundles from ramfs. (by Ian Abbott)

• Fixed curl download size limit handling. (by Christoph Steiger)

• Fixed missing file descriptor closing in some error cases. (by Christian Hitz)

• Fixed an issue with slot boot status determination that could accidentally detect ‘good’ slots as ‘bad’.

• Fixed inconsistent slot status reporting via the D-Bus API.

Testing

• Updated kernel used for qemu testing.

• Introduced an interactive mode for qemu-test.

• Moved testing container building to GitHub Actions.

• Updated testing container to Debian bullseye. (by Ludovico de Nitti)

• Added a scan-build workflow.

Code

• Removed some code left over after the removal of the deprecated file support.

• Refactored bundle opening as preparation for HTTP streaming.

• Added infrastructure for HTTP streaming tests.

• Completed D-Bus interface definitions. (by Taras Zaporozhets)

Documentation

• Improved documentation of the boot-mbr/gpt-switch slot types.

• Fixed and improved documentation and comments in several places. (by Alexander Dahl)

• Documented a common approach to handle UBIFS device names via udev.

• Added a FAQ entry covering the use of dm-crypt partitions. (by Fabian Büttner)

128 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

Contributions from: Ahmad Fatoum, Alexander Dahl, Arnaud Rebillout, Bastian Krause, Christian Hitz, Christoph
Steiger, Daniel Mack, Enrico Jörns, Fabian Büttner, Holger Assmann, Ian Abbott, Jan Lübbe, Jean-Pierre Geslin,
Ladislav Michl, Livio Bieri, Ludovico de Nittis, Marcel Hellwig, Michael Heimpold, Michael Tretter, Omer Akram,
Pascal Huerst, Richard Forro, Roland Hieber, Rouven Czerwinski, Sijmen Huizenga, Taras Zaporozhets, Vivien Dide-
lot, Vyacheslav Yurkov

13.7 Release 1.5.1 (released Jan 22, 2021)

Bug fixes

• Fix building with kernel headers < 4.14. (by Fabrice Fontaine)

• Fix manifest generation for casync bundles.

• Fix too strict payload size check which triggered on casync bundles generated by versions up to 1.4.

• Restore compatibility with glib 2.50.

Testing

• Switch from Travis-CI to GitHub actions.

• Add test builds on Ubuntu 16.04, 18.04 and 20.04 to catch build problems with older environments.

Contributions from: Enrico Jörns, Fabrice Fontaine, Jan Lübbe

13.8 Release 1.5 (released Dec 14, 2020)

Note: This version introduces the new verity bundle format (the old format is now called plain). The verity
format was added to prepare for future use cases (such as network streaming and encryption), for better parallelization
of installation with hash verification and to detect modification of the bundle during installation (CVE-2020-25860).
The bundle format is detected when reading a bundle and checked against the set of allowed formats configured in the
system.conf (see Bundle Formats).

As the old plain format does not offer protection against modification during the installation process, RAUC now
takes ownership of the bundle file, removes write permissions and checks for existing open file descriptors. This is
intended as a mitigation to protect against a compromised update service running as a non-root user, which would
otherwise be able to modify the bundle between signature check and actual bundle installation.

See Package-Based Distributions for more details on how to switch to the verity format.

Enhancements

• Add support for the verity bundle format. See the reference for details.

• Support resolving the root=PARTLABEL=xxx kernel command line option. (by Gaël PORTAY)

• Disable the unnecessary SMIMECapabilities information in the bundle signature, saving ~100 bytes.

• Remove redundant checksum verification for source images during installation. The RAUC bundle is already
verified at this point, so there is no need to verify the checksum of each file individually. (by Bastian Krause)

13.7. Release 1.5.1 (released Jan 22, 2021) 129

RAUC Documentation, Release 1.10.1

Security

• Take ownership of bundle files if they are not owned by root and remove write permissions. Then
check that no writable file descriptors are open for the bundle file (using the F_SETLEASE fcntl). This
fixes CVE-2020-25860. See the advisory for more details: https://github.com/rauc/rauc/security/advisories/
GHSA-cgf3-h62j-w9vv

Note: The https://github.com/rauc/rauc-1.5-integration repository contains examples to simplify integrating the
RAUC update into existing projects. You can subscribe to https://github.com/rauc/rauc-1.5-integration/issues/1 to
receive notifications of important updates to this repository and of integration into the upstream build systems.

Bug fixes

• Fix install handler selection for .img files for boot- slots when used with casync. (by Martin Schwan)

• Fix checking for unknown keys in the slot configuration.

• Fix some corner cases related to stopping the D-Bus daemon.

• Propagate error if unable to save manifest. (by Stefan Wahren)

• Apply –handler-args only during installation (and not during bundle creation).

Testing

• Ship test/minimal-test.conf to fix testing when running as root. (by Uwe Kleine-König)

• Increase usage of g_autofree/g_autoptr in the test suite.

Code

• Remove unused code for signed manifests (outside of a bundle).

• Add G_GNUC_WARN_UNUSED_RESULT to many functions.

Documentation

• Fix multiple smaller errors. (by Christoph Steiger, Christopher Obbard and Michael Heimpold)

• Improve documentation related to u-boot scripting and environment storage.

Contributions from: Bastian Krause, Christoph Steiger, Christopher Obbard, Enrico Jörns, Gaël PORTAY, Jan Lübbe,
Martin Schwan, Michael Heimpold, Stefan Wahren, Uwe Kleine-König

13.9 Release 1.4 (released Jul 20, 2020)

Note: Slots with both a parent= and a bootname= entry are now rejected when parsing the system configuration.
While the intention was to have either a bootname or a parent link, this was not enforced in previous versions. Move
the bootname to the parent slot when updating to RAUC 1.4.

130 Chapter 13. Changes in RAUC

https://github.com/rauc/rauc/security/advisories/GHSA-cgf3-h62j-w9vv
https://github.com/rauc/rauc/security/advisories/GHSA-cgf3-h62j-w9vv
https://github.com/rauc/rauc-1.5-integration
https://github.com/rauc/rauc-1.5-integration/issues/1

RAUC Documentation, Release 1.10.1

It is now recommended to explicitly select either per-slot or global configuration file in the system config using
statusfile=<path>/per-slot. If a central storage location is available, global status file should be preferred.

Enhancements

• Added support for custom boot selection scripts/binaries. This allows handling special cases where none of the
standard bootloaders is available for switching the redundant slots. (by Christian Bräuner Sørensen, docs by
Andreas Schmidt)

• Changed ext4 filesystem creation options to always use 256 byte inodes. Without it, mkfs.ext4 will default to
128 byte inodes on filesystems smaller than 512MiB. This avoids the “ext4 filesystem being mounted at /foo
supports timestamps until 2038” message on newer kernels.

• Added new slot type boot-gpt-switch to support atomic updating of boot partitions in the GPT. This is
useful if the firmware does not support atomic bootloader updates by itself. See here for details.

Bug fixes

• Improve parent and bootname consistency checks when loading the system config. (by Dan Callaghan)

• Fix and improve installation log output for the –disable-service configuration.

• Clean up incomplete bundles on creation errors consistently for extract/resign/convert and doesn’t remove pre-
existing files anymore.

• Fix minor memory leaks.

Testing

• Added tests for UBIFS and NAND slot types via nandsim in qemu.

• Added CI testing of the –disable-service configure option.

• Added test cases for some CLI subcommands.

Code

• Clarified licensing of the D-Bus API file. (by Michael Heimpold)

Documentation

• Manual pages have been updated with new options. (by Michael Heimpold)

• Improved documentation around central and per-slot status files.

• Improved images and various text sections.

Contributions from: Andreas Schmidt, Bastian Krause, Christian Bräuner Sørensen, Dan Callaghan, Enrico Jörns, Jan
Lübbe, Michael Heimpold, Tobias Junghans, Uwe Kleine-König

13.9. Release 1.4 (released Jul 20, 2020) 131

RAUC Documentation, Release 1.10.1

13.10 Release 1.3 (released Apr 23, 2020)

Enhancements

• Added a new D-Bus method (InstallBundle) which supports optional parameters (“ignore-compatible” for now).

• Added support for X.509 key usage attributes (code signing and others).

• Added a check-crl configuration option to require Certificate Revocation List (CRL) checking during instal-
lation. If the keyring already contains a CRL, but checking is not enabled, a warning will be printed.

• Support updating of already mounted slots via a custom install hook when enabled with “allow-mounted=true”
in the system configuration. This can be useful for updating bootloaders in a boot partition (for example on the
Raspberry Pi or BeagleBone). (by Martin Hundebøll and Rasmus Villemoes)

• Added the --mksquashfs-args option for bundle creation. This can be used to configure the details of the
squashfs compression. (by Louis des Landes)

• Added the --casync-args option for the rauc convert command. This can be used to configure the
details of the casync conversion. (by Christopher Obbard)

• Added support for installing UBIFS images via casync (depends on the casync PR https://github.com/systemd/
casync/pull/227). (by Ulrich Ölmann)

• Enabled usage of --no-verify with rauc resign. This can be useful for resigning of bundles signed
with expired certificates.

• Exposed the RAUC_BUNDLE_MOUNT_POINT environment variable to hook scripts. This also deprecates the
old name RAUC_UPDATE_SOURCE for this value in handler scripts. (by Rasmus Villemoes)

• Reduced size of the installed rauc binary. This was done by using --gc-sections and adding a configure
switch to disable the bundle, resign and convert commands. (by Rasmus Villemoes)

• Added support for explicitly telling RAUC that all slots are inactive on the kernel command line (rauc.
external). This is useful for using RAUC in a factory installer. (by Marco Felsch)

• Improved layout of the rauc status output.

Bug fixes

• Fixed SD/eMMC detection when using /dev/disk/by-path/ symlinks. (by Marco Felsch)

• Fixed handling of HTTP Content-Encoding: gzip. (by Jan Kundrát)

• Fixed reporting of errors during bundle verification. This solves a rauc-ERROR **: Not enough
substeps: check_bundle abort. (by Rouven Czerwinski)

• Fixed handling of surrounding whitespace in the system variant by removing it. A warning is printed in this
case.

• Fixed the RAUC D-Bus interface introspection file name to be consistent with the interface name. (by Michael
Tretter)

Testing

• Switched testing environment from user-mode-linux (UML) to QEMU. This allows us to use our own kernel
configuration and avoids the (unusual) dependency.

• Re-enabled support for coverity, as they have added support for GCC 8.

132 Chapter 13. Changes in RAUC

https://github.com/systemd/casync/pull/227
https://github.com/systemd/casync/pull/227

RAUC Documentation, Release 1.10.1

• Added some more tests in several areas.

Code

• Removed support for OpenSSL versions < 1.1.1. OpenSSL versions 1.0.2 and 1.1.0 are no longer supported by
the OpenSSL project: https://www.openssl.org/policies/releasestrat.html

• Improved support for large bundles on 32 bit systems, but some work remains to be done.

• Disabled automatic -Werror and -O0 when building from a git repository. This caused confusion in several
cases.

• Updated uncrustify and enabled some additional formatting rules.

• Reduced redundant prefixes in error messages.

• Removed unused verification functions left over from the old network mode.

• Removed minor memory leaks.

Documentation

• Clarified documentation about hooks and handlers (and the available environment variables).

• Fixed minor typos and inconsistencies.

Contributions from: Arnaud Rebillout, Christopher Obbard, Enrico Jörns, Jan Kundrát, Jan Lübbe, Louis des Landes,
Marco Felsch, Martin Hundebøll, Michael Heimpold, Michael Tretter, Rasmus Villemoes, Rouven Czerwinski, Trent
Piepho, Ulrich Ölmann

13.11 Release 1.2 (released Oct 27, 2019)

Enhancements

• Added --signing-keyring argument to specify a distinct keyring for post-signing verification. This allows
for example to use rauc resign with certs not verifying against the original keyring.

• Output of ‘rauc status’ is now grouped by slot groups to make it easier to identify the redundancy setup. Previ-
ously, the present slots were printed in a random order which was confusing, especially when having more than
three or four slots.

• Use pkg-config to obtain valid D-Bus install directories and clean up D-Bus directory handling. This adds
libdbus-1-dev as new build dependency. (by Michael Heimpold)

• Moved various checks that could be performed before actually starting the installation out of the atomic update
region. This allows RAUC to fail earlier without leaving behind a disabled slot group with incomplete contents.

• Added optional --progress argument to rauc install that enables a basic text progress bar instead of
the default line-by-line log.

• Added tmppath to casync system config options to allow setting TMPDIR for casync. (by Gaël PORTAY)

• Slot skipping was deactivated by default as it turned out to be unexpected behaviour for many users. The
corresponding setting was renamed to ‘install-same=’ (‘force-install-same’ will remain valid, too). The means
skipping writing for slots whose current and intended slot hashes are equal must now be enabled explicitly. This
optimization is mainly useful for use-cases with a read-only rootfs.

13.11. Release 1.2 (released Oct 27, 2019) 133

https://www.openssl.org/policies/releasestrat.html

RAUC Documentation, Release 1.10.1

• Added new slot type boot-mbr-switch to support atomic updating of boot partitions in the MBR. (by
Thomas Hämmerle) See here for details.

Bug fixes

• Fixed detection of whether the bundle path is located in input directory for a corner case.

• Fixed off-by-one error in printing the remaining attempts counter in the uboot.sh contrib script (by Ellie Reeves)

• Fixed detection of mount points disappearing during the service’s runtime.

• Added missing entry of ‘service’ subcommand to RAUC help text (if compiled with service support).

• Fixed inappropriate resetting of BOOT_ACK flag in eMMC extCSD register handling which could have pre-
vented proper booting on some SoCs. (by Stephan Michaelsen)

• Fixed leaking GDataInputStreams in boot selection and install handling that led to steadily increasing number
of open file descriptors in some scenarios until exceeding system limits and leading to ‘Too many open files’
errors. This was only problematic when installing many times without rebooting.

• Fixed ‘uninitialized local’ bugs in update_handler and config_file module. (by Gaël PORTAY)

• PKCS#11 handling now does not silently accept missing (empty) PINs anymore, but allows interactive prompt
for entering it.

• Fixed bundle detection on big endian systems.

• Fixed size mismatches in printf formatter and struct packing on ARM32.

Testing

• Fix checks that depended on implicit assumptions regarding the GHashTable behaviour that are not valid any-
more for newer glib versions.

• Added notes on required tools for unit testing and added check for grub-editenv being present.

• Travis now also runs cross-compilation tests for platforms armhf, i386, arm64, armel to allow early detection of
cross-compilation issues with endianness, 32 vs. 64 bit, etc.

Code

• Reworked subprocess call logging for debugging and added remaining missing log output to users of
r_subprocess_new().

• Refactored slot handling code in new ‘slot.c’ module to be used for both install and status information handling.

• Added qdbusxml2cpp annotations to rauc-installer.xml for interface class generation. (by Tobias Junghans)

• Removed the deprecated ‘network mode’. Note that this does not affect RAUC’s bundle network capabilities
(casync, etc.).

• Fixed clang compilation warnings (unused variable, printf formatter, non-obvious invert statements).

• Various code cleanups, structural simplifications

134 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

Documentation

• Added hints for creating /dev/data symlink to mount the right data partition in dual data partition setups.
(by Fabian Knapp)

• Extended manpage to cover ‘rauc status’ subcommands. (by Michael Heimpold)

• Fixed various typos.

Contributions from: Bastian Krause, Ellie Reeves, Enrico Jörns, Fabian Knapp, Gaël PORTAY, Jan Lübbe, Leif
Middelschulte, Michael Heimpold , Stephan Michaelsen , Thomas Hämmerle, Thorsten Scherer, Tobias Junghans,
Uwe Kleine-König

13.12 Release 1.1 (released Jun 5, 2019)

Enhancements

• Check that we do not generate a bundle inside a source directory

• Added full GRUB2 support, including status and primary slot readback (by Vitaly Ogoltsov and Beralt Mep-
pelink)

• Allow passing a slot’s name via commandline instead of it’s bootname

• Show each slot’s name in Booted from line of rauc status to simplify identification

• Add resize option for ext4 slots to let RAUC run resize2fs on an ext4 slot after copying the image.

• Allow dumping the signer certificate (--dump-cert) without verification

• Allow specifying a keyring directory with multiple files to support non-conflicting installations of certificates
from different packages (by Evan Edstrom)

• Add a bootloader option efi-use-bootnext (only valid when bootloader is ‘efi’) to disable usage of Boot-
Next for marking slots primary.

• Support setting a system variant in the system-info handler via RAUC_SYSTEM_VARIANT

• D-Bus “mountpoint” property now also exports external mount point

• Made slot state, compatible and variant available as environment variables for slot hooks

• Made system variant variable available as an environment variable for bundle hooks

Bug fixes

• Fix memory leaks in D-Bus notification callbacks (by Michael Heimpold)

• Fix memory leaks in resolve_bundle_path (by Michael Heimpold)

• Do not print misleading status dump when calling mark-* subcommands

• Avoid mmap’ing potentially huge files (by Rasmus Villemoes)

• Fix and cleanup checksum verification and handling (by Rasmus Villemoes)

• Avoid assertion error caused by unconditional slot status hash table freeing

• Make a-month-from-now validity check in signature verification more robust (by Rasmus Villemoes)

13.12. Release 1.1 (released Jun 5, 2019) 135

RAUC Documentation, Release 1.10.1

Testing

• Enable lgtm analysis for tests

• Restructure signature tests with set_up and tear_down (by Evan Edstrom)

• Move from gcc-6 to gcc-7

• Build environment fixes and workarounds

Code

• A failure in calling barebox_state bootchooser implementation should be propagated

• Update to latest git-version-gen upstream version

• Tail-call real rauc suprocess in rauc-service.sh (by Angus Lees)

• Consistently return newly-allocated objects in resolve_path()

• Enforce space between if and (via uncrustify

Documentation

• Added an initial version of a man page (by Michael Heimpold)

• Extended D-Bus API documentation

• Improve description of how RAUC detects the booted slot

• Added lgtm badge

• Add hints on library dependencies

• Clarifications on how to build and install RAUC

• Add note on basic RAUC buildroot support

• Clarification on usage of RAUC on host and target side

• Clarified documentation of ‘use-bundle-signing-time’ option (by Michael Heimpold)

• Typos fixed

Contributions from: Angus Lees, Arnaud Rebillout, Beralt Meppelink, Enrico Jörns, Evan Edstrom, Ian Abbott, Jan
Lübbe, Michael Heimpold, Rasmus Villemoes, Ulrich Ölmann, Vitaly Ogoltsov

13.13 Release 1.0 (released Dec 20, 2018)

Enhancements

• Support OpenSSL 1.1

• Use OPENSSL_config() instead of OPENSSL_no_config()

• Handle curl_global_init() return code

136 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

Bug fixes

• Fix error handling when resolving the backing file for a loop device

• Fix error reporting when no primary slot is found with u-boot (by Matthias Bolte)

• Fix memory leaks when parsing handler output

• Fix compiler error when building with –disable-network

• Handle fatal errors during curl or openssl initialization

• Fix boot selection handling for asymmetric update setups

• Fix default variant string in case of failure when obtaining

• Fix return codes when giving excess arguments to CLI functions

• Let ‘rauc service’ return exit code != 0 in case of failure

• Print ‘rauc service’ user error output with g_printerr()

• Fix showing primary slot (obtained via D-Bus) in ‘rauc status’

• Fix showing inverted boot-status (obtained via D-Bus) in ‘rauc status’

• Minor output and error handling fixes and enhancements

Testing

• Fake entropy in uml tests to fix and speed up testing

• Fix creating and submitting coverity report data

• Migrate to using Docker images for testing

• Changed coverage service from coveralls to codecov.io

• Switch to uncrustify 0.68.1

Documentation

• Provided slot configuration examples for common scenarios

• Fixes and enhancements of README.rst to match current state

• Add sphinx DTS lexer for fixing and improving dts example code parsing

Contributions from: Ahmad Fatoum, Enrico Jörns, Jan Lübbe, Matthias Bolte

13.14 Release 1.0-rc1 (released Oct 12, 2018)

Enhancements

• Bundle creation

– Add support for passing Keys/Certificates stored on PKCS#11 tokens (e.g. for using a smart card or
HSM). See PKCS#11 Support for details.

– Print a warning during signing if a certificate in the chain will expire within one month

– If keyring is given during bundle creation, automatically verify bundle signature and trust chain

13.14. Release 1.0-rc1 (released Oct 12, 2018) 137

RAUC Documentation, Release 1.10.1

• Configuration (see the reference for the [system], [keyring] and [slot.*.*] sections for details)

– Add extra-mount-opts argument to slot config to allow passing custom options to mount calls
(such as user_xattr or seclabel)

– Implement support for readonly slots that are part of the slot description but should never be written
by RAUC

– Add option use-bundle-signing-time to use signing time for verification instead of the current
time

– Introduce max-bundle-download-size config setting (by Michael Heimpold)

– Rename confusing ignore-checksum flag to force-install-same (old remains valid of course)
(by Jan Remmet)

– Add strict parsing of config files as we do for manifests already. This will reject configs with invalid keys,
groups, etc. to prevent unintentional behavior

• Installation

– Remove strict requirement of using .raucb file extension, although it is still recommended

– Export RAUC slot type to handlers and hooks (by Rasmus Villemoes)

– Add *.squashfs to raw slot handling (by Emmanuel Roullit)

– Add checking of RAUC bundle identifier (squashfs identifier)

– *.img files can now be installed to ext4, ubifs or vfat slots (by Michael Heimpold)

– Warn if downloaded bundle could not be deleted

• Expose system information (variant, compatible, booted slot) over D-Bus (by Jan Remmet)

• The rauc status command line call now only uses the D-Bus API (when enabled) to obtain status infor-
mation instead of loading configuration and performing operations itself. This finalizes the clear separations
between client and service and also allows calling the command line client without requiring any configuration.

• Add debug log domain rauc-subprocess for printing RAUC subprocess invocations. This can be activated
by setting the environment variable G_MESSAGES_DEBUG=rauc-subprocess. See Debugging RAUC for
details.

• Enhancement of many debug and error messages to be more precise and helpful

• Let U-Boot boot selection handler remove slot from BOOT_ORDER when marking it bad

• Implemented obtaining state and primary information for U-Boot boot selection interface (by Timothy Lee)

• Also show certificate validity times when the certificate chain is displayed

• Added a simple CGI as an example on how to code against the D-Bus API in RAUC contrib/ folder. (by Bastian
Stender)

Bug fixes

• Bootchooser EFI handler error messages and segfault fixed (by Arnaud Rebillout)

• Fix preserving of primary errors while printing follow-up errors in update_handlers (by Rasmus Villemoes)

• Make not finding (all) appropriate target slots a fatal error again

• Prevent non-installation operations from touching the installation progress information (by Bastian Stender)

• Call fsync() when writing raw images to assure content is fully written to disk before exiting (by Jim Bren-
nan)

138 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

• Fix casync store initialization for extraction without seeds (by Arnaud Rebillout)

• Fix slot status path generation for external mounts (by Vyacheslav Yurkov)

• Do not try to mount already mounted slots when loading slot status information from per-slot file

• Fix invalid return value in case of failed mark_active()

• Fix bootname detection for missing root= command line parameter

• Fix passing intermediate certificates via command line which got broken by a faulty input check (by Marcel
Hamer)

• Preserve original uid/gid during extraction to be independent of the running system. This was only
problematic if the name to ID mapping changed with an update. Note that this requires to enable
CONFIG_FEATURE_TAR_LONG_OPTIONS when using busybox tar.

• Block device paths are now opened with O_EXCL to ensure exclusive access

• Fix handling for file:// URIs

• Build-fix workaround for ancient (< 3.4) kernels (by Yann E. MORIN)

• Various internal error handling fixes (by Ulrich Ölmann, Bastian Stender)

• Several memory leak fixes

Testing

• Abort on g_critical() to detect issues early

• Extended and restructured testing for barebox and u-boot boot selection handling

• Basic rauc convert (casync) testing

• Switch to Travis xenial environment

• Make diffs created by uncrustify fatal to enforce coding style

• Fix hanging rauc.t in case of failed tests for fixing sharness cleanup function handling

• Run sharness (rauc.t) tests with verbose output

• Show make-check log on error

Code

• Add GError handling to download functions

• Prepare support for tracing log level

• Start more detailed annotation of function parameter direction and transfer

• Simplified return handling as result of cleanup helper rework

• Treewide introduction of Glib automatic cleanup helpers. Increases minimum required GLib version to 2.45.8
(by Philipp Zabel)

• Prepare deprecation of RAUC ancient non-bundle ‘network mode’

13.14. Release 1.0-rc1 (released Oct 12, 2018) 139

RAUC Documentation, Release 1.10.1

Documentation

• Add a Debugging RAUC chapter on how to debug RAUC

• Add a Bootloader Interaction section describing the boot selection layer and the special handling for the sup-
ported bootloaders

• Add hint on how to run RAUC without D-Bus to FAQ

• Document Required Host Tools and Required Target Tools

• Tons of typo fixes, minor enhancements, clarifications, example fixes, etc.

Contributions from: Alexander Dahl, Arnaud Rebillout, Bastian Stender, Emmanuel Roullit, Enrico Jörns, Jan Lübbe,
Jan Remmet, Jim Brennan, Marcel Hamer, Michael Heimpold, Philip Downer, Philipp Zabel, Rasmus Villemoes,
Thomas Petazzoni, Timothy Lee, Ulrich Ölmann, Vyacheslav Yurkov, Yann E. MORIN

13.15 Release 0.4 (released Apr 9, 2018)

Enhancements

• Add barebox-statename key to [system] section of system.conf in order to allow using non-default
names for barebox state

• Support atomic bootloader updates for eMMCs. The newly introduced slot type boot-emmc will tell RAUC
to handle bootloader updates on eMMC by using the mmcblkXboot0/-boot1 partitions and the EXT_CSD
registers for alternating updates.

• Support writing *.vfat images to vfat slots

• Add basic support for streaming bundles using casync tool. Using the casync tool allows streaming bundle
updates chunk-wise over http/https/sftp etc. By using the source slot as a seed for the reproducible casync
chunking algorithm, the actual chunks to download get reduced to only those that differ from the original system.

– Add rauc convert command to convert conventional bundles to casync bundle and chunk store

– Extend update handler to handle .caibx and .caidx suffix image types in bundle

• Added --detailed argument to rauc status to obtain newly added slot status information

• Added D-Bus Methods GetSlotStatus to obtain collected status of all slots

• Extended information stored in slot status files (installed bundle info, installation and activation timestamps and
counters)

• Optionally use a central status file located in a storage location not touched during RAUC updates instead of
per-slot files (enabled by setting statusfile key in [system] section of system.conf).

• Add write-slot command to write images directly to defined slots (for use during development)

Bug fixes

• Fix documentation out-of-tree builds

• Fixed packaging for dbus wrapper script rauc-service.sh

• Some double-free and error handling fixes

140 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

Testing

• Create uncrustify report during Travis run

Code

• Unified hash table iteration and variable usage

• Add uncrustify code style configuration checker script to gain consistent coding style. Committed changes
revealed by initial run.

Documentation

• Updated and extended D-Bus interface documentation

• Added documentation for newly added features (casync, central slot status, etc.)

• Fixed and extended Yocto (meta-rauc) integration documentation

• Add link to IRC/Matrix channel

• Some minor spelling errors fixed

13.16 Release 0.3 (released Feb 1, 2018)

Enhancements

• Added support for intermediate certificates, improved bundle resigning and certificate information for hooks.
This makes it easier to use a multi-level PKI with separate intermediate certificates for development and releases.
See Resigning Bundles for details.

• Added support for image variants, which allow creating a single bundle which supports multiple hardware
variants by selecting the matching image from a set contained in the bundle. See Handling Board Variants With
a Single Bundle for details.

• Added support for redundant booting by using EFI boot entries directly. See EFI for details.

• Added boot information to rauc status

• Added rauc extract command to extract bundles

• Support detection of the booted slot by using the UUID= and PARTUUID= kernel options.

• Improved the status and error output

• Improved internal error cause propagation

Bug fixes

• Fixed boot slot detection for root=<symlink> boot parameters (such as root=/dev/disk/by-path/
pci-0000:00:17.0-ata-1-part1)

• Removed redundant image checksum verification during installation.

13.16. Release 0.3 (released Feb 1, 2018) 141

RAUC Documentation, Release 1.10.1

Testing

• Improve robustness and test coverage

• Use gcc-7 for testing

Documentation

• Added documentation for

– intermediate certificates

– re-signing bundles

– image variants

– UEFI support

• Minor fixes and clarifications

13.17 Release 0.2 (released Nov 7, 2017)

Enhancements

• Added --override-boot-slot argument to force booted slot

• Display installation progress and error cause in CLI

• Allow installing uncompressed tar balls

• Error reporting for network handling and fail on HTTP errors

• Added --keyring command line argument

• Added activate-installed key and handling for system.conf that allows installing updates without
immediately switching boot partitions.

• Extended rauc status mark-{good,bad} with an optional slot identifier argument

• Added subcommand rauc status mark-active to explicitly activate slots

• New D-Bus method mark introduced that allows slot activation via D-Bus

• Added tar archive update handler for vfat slots

• Introduced rauc resign command that allows to exchange RAUC signature without modifying bundle con-
tent

• Display signature verification trust chain in output of rauc info. Also generate and display SPKI hash for
each certificate

• Added --dump-cert argument to rauc info to allow displaying signer certificate info

Documentation

• Added docs/, CHANGES and README to tarball

• Added and reworked a bunch of documentation chapters

• Help text for rauc bundle fixed

142 Chapter 13. Changes in RAUC

RAUC Documentation, Release 1.10.1

• Added short summary for command help

Bug fixes

• Flush D-Bus interface to not drop property updates

• Set proper PATH when starting service on non-systemd systems

• Include config.h on top of each file to fix largefile support and more

• Let CLI properly fail on excess arguments provided

• Do not disable bundle checking for rauc info --no-verify

• Properly clean up mount points after failures

• Abort on inconsistent slot parent configuration

• Misc memory leak fixes

• Fixes in error handling and debug printout

• Some code cleanups

Testing

• Miscellaneous cleanups, fixes and refactoring

• Add tests for installation via D-Bus

• Let Travis build documentation with treating warnings as errors

• Allow skipping sharness tests requiring service enabled

• Explicitly install dbus-x11 package to fix Travis builds

• Fix coveralls builds by using --upgrade during pip install cpp-coveralls

• Use gcc-6 for testing

13.18 Release 0.1.1 (released May 11, 2017)

Enhancements

• systemd service: allow systemd to manage and cleanup RAUCs mount directory

Documentation

• Added contribution guideline

• Added CHANGES file

• Converted README.md to README.rst

• Added RAUC logo

• Several typos fixed

• Updated documentation for mainline PTXdist recipes

13.18. Release 0.1.1 (released May 11, 2017) 143

RAUC Documentation, Release 1.10.1

Bug fixes

• Fix signature verification with OpenSSL 1.1.x by adding missing binary flag

• Fix typo in json status output formatter (“mountpint” -> “mountpoint”)

• Fixed packaging of systemd service files by removing generated service files from distribution

• src/context: initialize datainstream to NULL

• Added missing git-version-gen script to automake distribution which made autoreconf runs on release packages
fail

• Fixed D-Bus activation of RAUC service for non-systemd systems

13.19 Release 0.1 (released Feb 24, 2017)

This is the initial release of RAUC.

• search

• genindex

144 Chapter 13. Changes in RAUC

CHAPTER 14

The Need for Updating

Updating an embedded system is always a critical step during the life cycle of an embedded hardware product. Updates
are important to either fix system bugs, solve security problems or simply for adding new features to a platform.

As embedded hardware often is placed in locations that make it difficult or costly to gain access to the board itself,
an update must be performed unattended; for example either by connecting a special USB stick or via some network
roll-out strategy.

Updating an embedded system is risky; an update might be incompatible, a procedure crashes, the underlying storage
fails with a write error, or someone accidentally switches the power off, etc. All this may occur but should not lead to
having an unbootable hardware at the end.

Another point besides safe upgrades are security considerations. You would like to prevent that someone unauthorized
is able to load modified firmware onto the system.

145

RAUC Documentation, Release 1.10.1

146 Chapter 14. The Need for Updating

CHAPTER 15

What is RAUC?

RAUC is a lightweight update client that runs on your embedded device and reliably controls the procedure of updating
your device with a new firmware revision. RAUC is also the tool on your host system that lets you create, inspect and
modify update artifacts for your device.

The decision to design was made after having worked on custom update solutions for different projects again and again
while always facing different issues and unexpected quirks and pitfalls that were not taken into consideration before.

Thus, the aim of RAUC is to provide a well-tested, solid and generic base for the different custom requirements and
restrictions an update concept for a specific platform must deal with.

When designing the RAUC update tool, all of these requirements were taken into consideration. In the following,
we provide a short overview of basic concepts, principles and solutions RAUC provides for updating an embedded
system.

147

RAUC Documentation, Release 1.10.1

148 Chapter 15. What is RAUC?

CHAPTER 16

And What Not?

RAUC is NOT a full-blown updating application or GUI. It provides a CLI for testing but is mainly designed to allow
seamless integration into your individual Applications and Infrastructure by providing a D-Bus interface.

RAUC can NOT replace your bootloader who is responsible for selecting the appropriate target to boot, but it provides
a well-defined interface to incorporate with all common bootloaders.

RAUC does NOT intend to be a deployment server. On your host side, it only creates the update artifacts. You may
want to have a look at rauc-hawkbit-updater for interfacing with the hawkBit deployment server.

RAUC bundles are NOT a general purpose transport container. This means that on your target side you should not
use rauc extract. Instead use rauc install or the D-Bus API to trigger an installation. Any necessary
customization should be done using hooks and handlers.

And finally, factory bring up of your device, i.e. initial partitioning etc. is also out of scope for an update tool like
RAUC. While you may use it for initially filling your slot contents during factory bring up, the partitioning or volume
creation must be made manually or by a separate factory bring up tool (such as systemd-repart).

149

https://github.com/rauc/rauc-hawkbit-updater
https://www.freedesktop.org/software/systemd/man/systemd-repart.html

RAUC Documentation, Release 1.10.1

150 Chapter 16. And What Not?

CHAPTER 17

Key Features of RAUC

• Fail-Safe & Atomic:

– An update may be interrupted at any point without breaking the running system.

– Update compatibility check

– Mark boots as successful / failed

• Cryptographic signing and verification of updates using OpenSSL (signatures based on x.509 certificates)

– Keys and certificates on PKCS#11 tokens (HSMs) are supported

• Built-In HTTP(S) streaming support for updates

– No intermediate storage on target required.

• Optional encryption of update bundles

– Encryption for a single or multiple recipients (public keys) supported

• Flexible and customizable redundancy/storage setup

– Symmetric setup (Root-FS A & B)

151

RAUC Documentation, Release 1.10.1

– Asymmetric setup (recovery & normal)

– Application partition, data partitions, . . .

– Allows grouping of multiple slots (rootfs, appfs) as update targets

• Bootloader interface supports common bootloaders

– grub

– barebox

* Well integrated with bootchooser framework

– u-boot

– EFI

• Storage support:

– ext4 filesystem

– eMMC boot partitions (atomic update)

– vfat filesystem

– UBI volumes

– UBIFS

– JFFS2

– raw NAND flash (using nandwrite)

– raw NOR flash (using flashcp)

– squashfs

– MBR partition table

– GPT partition table

• Independent from update sources

– USB Stick

– Software provisioning server (e.g. Hawkbit)

• Controllable via D-Bus interface

• Supports data migration

• Several layers of update customization

– Update-specific extensions (hooks)

– System-specific extensions (handlers)

– Fully custom update script

• Build-system support

152 Chapter 17. Key Features of RAUC

https://www.gnu.org/software/grub/
http://barebox.org/
http://barebox.de/doc/latest/user/bootchooser.html?highlight=bootchooser
http://www.denx.de/wiki/U-Boot
https://de.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

RAUC Documentation, Release 1.10.1

Yocto support in meta-rauc PTXdist support since 2017.04.0. Buildroot support since 2017.08

153

https://github.com/rauc/meta-rauc
https://www.buildroot.org

RAUC Documentation, Release 1.10.1

154 Chapter 17. Key Features of RAUC

Index

B
Boot Chooser, 115

I
Install Group, 115

R
Recovery System, 115

S
Slot, 115
Slot Class, 115
System Configuration, 115

U
Update Bundle, 115
Update Controller, 115
Update Handler, 115
Update Manifest, 115

155

	Updating your Embedded Device
	RAUC Basics
	Using RAUC
	Examples
	Scenarios
	Integration
	Advanced Topics
	Design Checklist
	Frequently Asked Questions
	Reference
	Terminology
	Contributing
	Changes in RAUC
	The Need for Updating
	What is RAUC?
	And What Not?
	Key Features of RAUC
	Index

