

Welcome to the RAUC documentation!

Contents:

	1. Updating your Embedded Device

	2. RAUC Basics

	3. Using RAUC

	4. Examples

	5. Scenarios

	6. Integration

	7. Advanced Topics

	8. Design Checklist

	9. Frequently Asked Questions

	10. Reference

	11. Terminology

	12. Contributing

	13. Changes in RAUC

	Search Page

	Index

The Need for Updating

Updating an embedded system is always a critical step during the life cycle of
an embedded hardware product.
Updates are important to either fix system bugs, solve security problems or
simply for adding new features to a platform.

As embedded hardware often is placed in locations that make it difficult or
costly to gain access to the board itself, an update must be performed unattended;
for example either by connecting a special USB stick or via some network roll-out
strategy.

Updating an embedded system is risky; an update might be incompatible, a
procedure crashes, the underlying storage fails with a write error, or someone
accidentally switches the power off, etc.
All this may occur but should not lead to having an unbootable hardware at the
end.

Another point besides safe upgrades are security considerations.
You would like to prevent that someone unauthorized is able to load modified
firmware onto the system.

What is RAUC?

RAUC is a lightweight update client that runs on your embedded device and
reliably controls the procedure of updating your device with a new firmware
revision.
RAUC is also the tool on your host system that lets you create, inspect and
modify update artifacts for your device.

The decision to design was made after having worked on custom update solutions
for different projects again and again while always facing different issues and
unexpected quirks and pitfalls that were not taken into consideration before.

Thus, the aim of RAUC is to provide a well-tested, solid and generic base for
the different custom requirements and restrictions an update concept for a
specific platform must deal with.

When designing the RAUC update tool, all of these requirements were taken into
consideration. In the following, we provide a short overview of basic concepts,
principles and solutions RAUC provides for updating an embedded system.

And What Not?

RAUC is NOT a full-blown updating application or GUI.
It provides a CLI for testing but is mainly designed to allow seamless
integration into your individual Applications and Infrastructure by providing a
D-Bus interface.

RAUC can NOT replace your bootloader who is responsible for selecting the
appropriate target to boot, but it provides a well-defined interface to
incorporate with all common bootloaders.

RAUC does NOT intend to be a deployment server.
On your host side, it only creates the update artifacts.
You may want to have a look at
rauc-hawkbit [https://github.com/rauc/rauc-hawkbit] for interfacing with the
hawkBit deployment server.

And finally, factory bring up of your device, i.e. initial partitioning etc. is
also out of scope for an update tool like RAUC.
While you may use it for initially filling your slot contents during factory
bring up, the partitioning or volume creation must be made manually or by a
separate factory bring up script.

Key Features of RAUC

	Fail-Safe & Atomic:

	An update may be interrupted at any point without breaking the running
system.

	Update compatibility check

	Mark boots as successful / failed

	Cryptographic signing and verification of updates using OpenSSL (signatures
based on x.509 certificates)

[image: _images/rauc_safety_security.png]

	Keys and certificates on PKCS#11 tokens (HSMs) are supported

	Flexible and customizable redundancy/storage setup

[image: _images/rauc_update_cases.svg]
	Symmetric setup (Root-FS A & B)

	Asymmetric setup (recovery & normal)

	Application partition, data partitions, …

	Allows grouping of multiple slots (rootfs, appfs) as update targets

	Bootloader interface supports common bootloaders

[image: _images/bootloader_interface.svg]
	grub [https://www.gnu.org/software/grub/]

	barebox [http://barebox.org/]

	Well integrated with bootchooser [http://barebox.de/doc/latest/user/bootchooser.html?highlight=bootchooser] framework

	u-boot [http://www.denx.de/wiki/U-Boot]

	EFI [https://de.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface]

	Storage support:

	ext4 filesystem

	vfat filesystem

	UBI volumes

	UBIFS

	raw NAND flash (using nandwrite)

	raw NOR flash (using flashcp)

	squashfs

	Independent from update sources

	USB Stick

	Software provisioning server (e.g. Hawkbit)

	Controllable via D-Bus interface

	Supports data migration

	Several layers of update customization

	Update-specific extensions (hooks)

	System-specific extensions (handlers)

	Fully custom update script

	Build-system support

	[image: yocto_logo]

	[image: ptxdist_logo]

	[image: buildroot_logo]

	Yocto support in meta-rauc [https://github.com/rauc/meta-rauc]

	PTXdist support since 2017.04.0.

	Buildroot [https://www.buildroot.org] support since 2017.08

1. Updating your Embedded Device

This chapter does not explicitly tell you anything about RAUC itself, but it
provides an initial overview of basic requirements and design consideration
that have to be taken into account when designing an update architecture for
your embedded device.

Thus, if you know about updating and are interested in RAUC itself, only,
simply skip this chapter.

Nevertheless, this chapter could also provide some useful hints that can
already be useful when designing the device you intend to update later on.
In this you initial phase you can prevent yourself from making wrong decisions.

1.1. Redundancy and Atomicity

There are two key requirements for allowing you to robustly update your system.

The first one is redundancy:
You must not update the system you are currently running on.
Otherwise a failure during updating will brick the only system you can run your
update from.

The second one is atomicity:
Writing your update to the currently inactive device is a critical operation.
A failure occurring during this installation must not brick your device.
Thus you must make sure to tell your boot logic to select the updated device
not before being very sure that the update successfully completed.
Additionally, the operation that switches the boot device must be atomic
itself.

[image: _images/atomicity-redundancy-seq1-4.svg]

1.2. Storage Type and Size

The type and amount of available storage on your device has a huge impact on
the design of your updatable embedded system.

Except when optimizing for the smallest storage requirements possible, your
system should have two redundant devices or partitions for your root
file-system.
This full symmetric setup allows you to run your application while safely
updating the inactive copy.
Additionally, if the running system become corrupted for any reason, you may
fall back to you second rootfs device.

If the available storage is not much larger than the space required by your
devices rootfs, a full redundant symmetric A/B setup will not be an option.
In this case, you might need to use a rescue system consisting of a minimal kernel
with an appended initramfs to install your updates.

Note

If you can choose the storage technology for your system, DO NOT choose raw
NAND flash.
NAND (especially MLC) is complex to handle correctly and comes with a
variety of very specific effects that may cause difficult to debug problem later
(if not all details of the storage stack are configured just right).
Instead choose eMMC or SSDs, where the engineers who (hopefully) know the quirks
of their technology have created layers that hide this complexity to you.

If storage size can be freely chosen, calculate for at least 2x the size of
your rootfs plus additionally required space, e.g. for bootloader, (redundant)
data storage, etc.

1.3. Security

An update tool or the infrastructure around it should ensure that no
unauthorized entity is able to update your device.
This can be done by having:

	a secure channel to transfer the update or

	a signed update that allows you to verify its author.

Note that the latter method is more flexible and might be the only option if
you intend to use a USB stick for example.

1.4. Interfacing with your Bootloader

The bootloader is the final instance that controls which partition on your
rootfs device will be booted. In order to switch partitions after an update,
you have to have an interface to the bootloader that allows you to set the boot
order, boot priority and other possible parameters.

Some bootloaders, such as U-Boot, allow access to their environment storage
where you can freely create and modify variables the bootloader may read.
Boot logic often can be implemented by a simple boot script.

Some others have distinct redundancy boot interfaces with redundant state
storage. These often provide more features than simply switching boot
partitions and are less prone to errors when used.
The Barebox bootloader with its bootchooser framework is a good example for
this.

1.5. Update Source and Provisioning

Depending on your infrastructure or requirements, an update might be deployed in
several ways.

The two most common ones are over network, e.g. by using a deployment server,
or simply over a USB stick that will be plugged into the target system.

2. RAUC Basics

From a top view, the RAUC update framework provides a solution for four basic
tasks:

	generating update artifacts

	signing and verification of update artifacts

	robust installation handling

	interfacing with the boot process

RAUC is basically an image-based updater, i.e. it installs file images on
devices or partitions.
But, for target devices that can have a file system, it also supports
installing contents from tar archives.
This often provides much more flexibility as a tar does not have to fit a
specific partition size or type.
RAUC ensures that the target file system will be set up correctly before
unpacking the archive.

2.1. Update Artifacts – Bundles

In order to know how to pack multiple file system images, properly handle
installation, being able to check system compatibility and for other
meta-information RAUC uses a well-defined update artifact format, simply
referred to as bundles in the following.

A RAUC bundle consists of the file system image(s) or archive(s) to be installed
on the system, a manifest that lists the images to install and contains
options and meta-information, and possible scripts to run before, during or
after installation.
A bundle may also contain files not referenced in the manifest,
such as scripts or archives that are referenced by files that are
included in the manifest.

To pack this all together, these contents are collected into a SquashFS image.
This provides good compression while allowing to mount the bundle without
having to unpack it on the target system.
This way, no additional intermediate storage is required.
For more details see the Bundle Formats section.

A key design decision of RAUC is that signing a bundle is mandatory.
For development purpose a self-signed certificate might be sufficient,
for production the signing process should be integrated with your PKI
infrastructure.

Important

A RAUC Bundle should always unambiguously describe the
intended target state of the entire system.

2.2. RAUC’s System View

Apart from bundle signing and verification, the main task of RAUC is to ensure
that all images in your update bundle are copied in the proper way to the proper
target device / partition on your board.

In order to allow RAUC to handle your device right, we need to give it the
right view on your system.

2.3. Slots

In RAUC, everything that can be updated is a slot.
Thus a slot can either be a full device, a partition, a volume or simply a file.

To let RAUC know which slots exists on the board that should be handled,
the slots must be configured in a system configuration file.
This file is the central instance that tells RAUC how to handle the board, which
bootloader to use, which custom scripts to execute, etc.

The slot description names, for example, the file path the slot can be accessed
with, the type of storage or filesystem to use, its identification from the
bootloader, etc.

2.4. Target Slot Selection

A very important step when installing an update is to determine the correct
mapping from the images that are contained in a RAUC bundle to the slots that
are defined on the target system.
The updated must also assure to select an inactive slot, and not accidentally a
slot the system currently runs from.

For this mapping, RAUC allows to define different slot classes.
A class describes always multiple redundant slots of the same type.
This can be, for example, a class for root file system slots or a
class for application slots.

Note that despite the fact that classic A+B redundancy is a common setup for
many systems, RAUC conceptually allows any number of redundant slots per class.

Now, multiple slots of different classes can be grouped as a slot group.
Such a group is the base for the slot selection algorithm of RAUC.

Consider, for example, a system with two redundant rootfs slots and two
redundant application slots. Then you group them together to have a fixed set
of a rootfs and application slot each that will be used together.

[image: _images/rauc-multi-image.svg]

To detect the active slots, RAUC attempts to detect the currently booted slot.
For this, it relies on explicit mapping information provided via kernel command
line or attempts to find it out using mount information.

All slots of the group containing the active slot will be considered active,
too.

2.5. Slot Status and Skipping Slot Updates

RAUC hashes each image or archive when packing it into a bundle and stores this
hash in the bundle’s manifest file.
This hash allows to reliably identify and distinguish the image’s content.

When installing an image, RAUC can write the images hash together with some
status information to a central or per-slot status file
(refer statusfile option).

The next time RAUC attempts to install an image to this slot, it will first
check the current hash of the slot by reading its status information, if
available.
If this hash equals the hash of the image to write, RAUC can skip updating this
slot as a configurable performance optimization
(refer install-same per-slot option).

This is especially useful when having a setup with, for example, two redundant
application file systems and two redundant root file systems. In case you
update the application file system content much more frequently while keeping
the exact same rootfs content, RAUC will save update time by skipping the root
file system automatically and only installing the changed application.

2.6. Boot Slot Selection

A system designed to run from redundant slots must always have a component that
is responsible for selecting between the bootable slots.
Usually, this will be some kind of bootloader, but it could also be an initramfs
booting a special purpose Linux system.

Of course, as a normal user-space tool, RAUC cannot do the selection itself, but
provides a well-defined interface and abstraction for interacting with different
bootloaders (e.g. GRUB, Barebox, U-Boot) or boot selection methods.

[image: _images/bootloader_interface.svg]

In order to enable RAUC to switch the correct slot, its system configuration
must specify the name of the respective slot from the bootloader’s perspective.
You also have to set up an appropriate boot selection logic in the bootloader
itself, either by scripting (as for GRUB, U-Boot) or by using dedicated boot
selection infrastructure (such as bootchooser in Barebox).

The bootloader must also provide a set of variables the Linux userspace can
modify in order to change boot order or priority.

Having this interface ready, RAUC will care for setting the boot logic
appropriately.
It will, for example, deactivate the slot to update before writing to it
and reactivate it after having completed the installation successfully.

2.7. Installation and Storage Handling

As mentioned above, RAUC basically writes images to devices or partitions, but
also allows installing file system content from (compressed) tar archives.

In addition to the need for different methods to write to storage (simple copy
for block devices, nandwrite for NAND, ubiupdatevol for UBI volumes, …) the
tar-based installation requires additional handling and preparation of storage.

Thus, the possible and required handling depends on both the type of input
image (e.g. .tar.xz, .ext4, .img) as well as the type of storage.
A tar can be installed on different file systems while an ext4 file system slot
might be filled by both an .ext4 image or a tar archive.

To deal with all these possible combinations, RAUC provides an update handler
algorithm that uses a matching table to define valid combinations of image and
slot type while specifying the appropriate handling.

[image: _images/rauc_update_handler.svg]

2.8. Boot Confirmation & Fallback

When designing a robust redundant system, update handling does not end with the
successful installation of the update on the target slots!
Having written your image data without any errors does not mean that the system
you just installed will really boot.
And even if it boots, there may be crashes or invalid behavior only revealed
at runtime or possibly not before a number of days and reboots.

To allow the boot logic to detect if booting a slot succeeded or failed,
it needs to receive some feedback from the booted system.
For marking a boot as either successful or bad, RAUC provides the commands
status mark-good and status mark-bad.
These commands interact through the boot loader interface with the respective
bootloader implementation to indicate a successful or failed boot.

As detecting an invalid boot is often not possible, i.e. because simply nothing
boots or the booted system suddenly crashes, your system should use a hardware
watchdog to during boot and have support in the bootloader to detect watchdog
resets as failed boots.

Also you need to define what happens when a boot slot is detected to be
unusable.
For most cases it might be desired to either select one of the redundant slots
as fallback or boot into a recovery system.
This handling is up to your bootloader.

2.9. HTTP Streaming

Since RAUC 1.6, bundles can be installed directly from a HTTP(S) server,
without having to download and store the bundle locally.
Simply use the bundle URL as the rauc install argument instead of a local
file.

Using streaming has a few requirements:

	configure RAUC with --enable-streaming

	create bundles using the verity format

	host the bundle on a server which supports HTTP Range Requests

	enable NBD support in the kernel

See the HTTP Streaming section in the Advanced chapter
for more details.

3. Using RAUC

For using RAUC in your embedded project, you will need to build at least two
versions of it:

	One for your host (build or development) system.
This will allow you to create, inspect and modify bundles.

	One for your target system.
This can act both as the service for handling the installation on your system,
as a command line tool that allows triggering the installation and inspecting your
system or obtaining bundle information.

All common embedded Linux build system recipes for RAUC will solve the task of
creating appropriate binaries for you as well as caring for bundle creation and
partly system configuration.
If you intend to use RAUC with Yocto, use the
meta-rauc [https://github.com/rauc/meta-rauc] layer, in case you use
PTXdist, simply enable RAUC in your configuration.

Note

When using the RAUC service from your application, the D-Bus interface is
preferable to using the provided command-line tool.

3.1. Creating Bundles

To create an update bundle on your build host, RAUC provides the bundle
sub-command:

rauc bundle --cert=<certfile> --key=<keyfile> --keyring=<keyringfile> <input-dir> <output-file>

Where <input-dir> must be a directory containing all images and scripts the
bundle should include, as well as a manifest file manifest.raucm that
describes the content of the bundle for the RAUC updater on the target:
which image to install to which slot, which scripts to execute etc.
Note that all files in <input-dir> will be included in the bundle,
not just those specified in the manifest (see also the example and the reference).
<output-file> must be the path of the bundle file to create.

Instead of the certfile and keyfile arguments, PKCS#11 URLs such as
'pkcs11:token=rauc;object=autobuilder-1' can be used to avoid storing
sensitive key material as files (see PKCS#11 Support
for details).

While the --cert and --key argument are mandatory for signing and must
provide the certificate and private key that should be used for creating the
signature, the --keyring argument is optional and (if given) will be used
for verifying the trust chain validity of the signature after creation.
Note that this is very useful to prevent signing with obsolete
certificates, etc.

3.2. Obtaining Bundle Information

rauc info [--output-format=<format>] <input-file>

The info command lists the basic meta data of a bundle (compatible, version,
build-id, description) and the images and hooks contained in the bundle.

You can control the output format depending on your needs.
By default it will print a human readable representation of the bundle not
intended for being processed programmatically.
Alternatively you can obtain a shell-parsable description or a JSON
representation of the bundle content.

3.3. Installing Bundles

To actually install an update bundle on your target hardware, RAUC provides the
install command:

rauc install <input-file>

Alternatively you can trigger a bundle installation using the D-Bus API.

3.4. Viewing the System Status

For debugging purposes and for scripting it is helpful to gain an overview of
the current system as RAUC sees it.
The status command allows this:

rauc status [--detailed] [--output-format=<format>]

You can choose the output style of RAUC status depending on your needs.
By default it will print a human readable representation of your system’s most
important properties. Alternatively you can obtain a shell-parsable description,
or a JSON representation of the system status.
If more information is needed such as the slots’ status add
the command line option --detailed.

3.5. React to a Successfully Booted System/Failed Boot

Normally, the full system update chain is not complete before being sure that
the newly installed system runs without any errors.
As the definition and detection of a successful operation is really
system-dependent, RAUC provides commands to preserve a slot as being the
preferred one to boot or to discard a slot from being bootable.

rauc status mark-good

After verifying that the currently booted system is fully operational, one
wants to signal this information to the underlying bootloader implementation
which then, for example, resets a boot attempt counter.

rauc status mark-bad

If the current boot failed in some kind, this command can be used to communicate
that to the underlying bootloader implementation. In most cases this will
disable the currently booted slot or at least switch to a different one.

Although not very useful in the field, both commands recognize an optional
argument to explicitly identify the slot to act on:

rauc status mark-{good,bad} [booted | other | <SLOT_NAME>]

This is to maintain consistency with respect to rauc status mark-active
where that argument is definitively wanted, see here.

3.6. Manually Switch to a Different Slot

One can think of a variety of reasons to switch the preferred slot for the next
boot by hand, for example:

	Recurrently test the installation of a bundle in development starting from a
known state.

	Activate a slot that has been installed sometime before and whose activation
has explicitly been prevented at that time using the system configuration
file’s parameter activate-installed.

	Switch back to the previous slot because one really knows better™.

To do so, RAUC offers the subcommand

rauc status mark-active [booted | other | <SLOT_NAME>]

where the optional argument decides which slot to (re-)activate at the expense
of the remaining slots. Choosing other switches to the next bootable slot
that is not the one that is currently booted. In a two-slot-setup this is
just… the other one. If one wants to explicitly address a known slot, one can
do so by using its slot name which has the form <slot-class>.<idx> (e.g.
rootfs.1), see this part of section
System Configuration File. Last but not least,
after switching to a different slot by mistake, before having rebooted this can
be remedied by choosing booted as the argument which is, by the way, the
default if the optional argument has been omitted.
The date and time of activation as well as the number of activations is part of
the slot’s metadata which is stored in the slot status file, see section
Slot Status.

3.7. Customizing the Update

RAUC provides several ways to customize the update process. Some allow adding
and extending details more fine-grainedly, some allow replacing major parts of
the default behavior of RAUC.

In general, there exist three major types of customization:

	configuration parameters (in rootfs config file /etc/rauc/system.conf)

	handlers (executables in rootfs)

	hooks (executables in bundle)

The first type, configuration parameters, allow controlling parameters of the
update in a predefined way.

The second type, using handlers, allows extending or replacing the
installation process. They are executables (most likely shell scripts) located
in the root filesystem and configured in the system’s configuration file. They
control static behavior of the system that should remain the same over future
updates.

The last type are hooks. They are similar to handlers, except that they are
contained in the update bundle. Thus they allow to flexibly extend or customize
one or more updates by some special behavior.
A common example would be using a per-slot post-install hook that handles
configuration migration for a new software version. Hooks are especially useful
to handle details of installing an update which were not considered in the
previously deployed version.

In the following, configuration parameters, handlers and hooks will be
explained in more detail.

3.7.1. System Configuration Parameters

Beside providing the basic slot layout, RAUC’s system configuration file
(system.conf) also allows you to configure parts of its runtime behavior,
such as handlers (see below), paths, etc.
For a detailed list of possible configuration options,
see System Configuration File section in the Reference chapter.

3.7.2. System-Based Customization: Handlers

Handlers are executables located in the target’s root file system that allow
extending the installation process on system side.
They must be specified in the targets System Configuration File.

For a detailed list of all environment variables exported for the handler
scripts, see the Custom Handlers (Interface) section.

Pre-Install Handler

[handlers]
pre-install=/usr/lib/rauc/pre-install

RAUC will call the pre-install handler (if given) during the bundle
installation process, right before calling the default or custom installation
process. At this stage, the bundle is mounted, its content is accessible and the
target group has been determined successfully.

If calling the handler fails or the handler returns a non-zero exit code, RAUC
will abort installation with an error.

Post-Install Handler

[handlers]
post-install=/usr/lib/rauc/post-install

The post-install handler will be called right after RAUC successfully performed
a system update. If any error occurred during installation, the post-install
handler will not be called.

Note that a failed call of the post-install handler or a non-zero exit code
will cause a notification about the error but will not change the result of the
performed update anymore.

A possible usage for the post-install handler could be to trigger an automatic
restart of the system.

System-Info Handler

[handlers]
system-info=/usr/lib/rauc/system-info

The system-info handler is called after loading the configuration file. This
way it can collect additional variables from the system, like the system’s
serial number.

The handler script must return a system serial number by echoing
RAUC_SYSTEM_SERIAL=<value> to standard out.

3.7.3. Bundle-Based Customization: Hooks

Unlike handlers, hooks are part of the update bundle and must be
specified in the bundle’s Manifest file and handled by a common
executable.
Hooks allow the author of a bundle to add or replace functionality for the
installation of a specific bundle.
This can be useful for performing additional migration steps, checking for
specific previously installed bundle versions or for manually handling updates
of images RAUC cannot handle natively.

To reduce the complexity and number of files in a bundle, all hooks must be
handled by a single executable that is registered in the bundle’s manifest:

[hooks]
filename=hook

Each hook must be activated explicitly and leads to a call of the hook executable
with a specific argument that allows to distinguish between the different hook
types. Multiple hook types must be separated with a ;.

In the following the available hooks are listed. Depending on their purpose,
some are image-specific, i.e. they will be executed for the installation of a
specific image only, while some other are global.

3.7.3.1. Install Hooks

Install hooks operate globally on the bundle installation.

For a detailed list of all environment variables exported for the hooks
executable, see the Install Hooks Interface section.

Install-Check Hook

[hooks]
filename=hook
hooks=install-check

This hook will be executed instead of the normal compatible check in order to
allow performing a custom compatibility check based on compatible and/or version
information.

To indicate that a bundle should be rejected, the script must return with an
exit code >= 10.

If available, RAUC will use the last line printed to standard error by
the hook executable as the rejection reason message and provide it to the user:

#!/bin/sh

case "$1" in
 install-check)
 if [["$RAUC_MF_COMPATIBLE" != "$RAUC_SYSTEM_COMPATIBLE"]]; then
 echo "Compatible does not match!" 1>&2
 exit 10
 fi
 ;;
 *)
 exit 1
 ;;
esac

exit 0

3.7.3.2. Slot Hooks

Slot hooks are called for each slot an image will be installed to. In order to
enable them, you have to specify them in the hooks key under the respective
image section.

Note that hook slot operations will be passed to the executable with the prefix
slot-. Thus if you intend to check for the pre-install hook, you have to
check for the argument to be slot-pre-install.

For a detailed list of all environment variables exported for the hooks
executable, see the Slot Hooks Interface section.

Pre-Install Hook

The pre-install hook will be called right before the update procedure for the
respective slot will be started. For slot types that represent a mountable file
system, the hook will be executed with having the file system mounted.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=pre-install

Post-Install Hook

The post-install hook will be called right after the update procedure for the
respective slot was finished successfully. For slot types that represent a
mountable file system, the hook will be executed with having the file system
mounted. This allows to write some post-install information to the slot. It is
also useful to copy files from the currently active system to the newly
installed slot, for example to preserve application configuration data.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=post-install

An example on how to use a post-install hook:

#!/bin/sh

case "$1" in
 slot-post-install)
 # only rootfs needs to be handled
 test "$RAUC_SLOT_CLASS" = "rootfs" || exit 0

 touch "$RAUC_SLOT_MOUNT_POINT/extra-file"
 ;;
 *)
 exit 1
 ;;
esac

exit 0

Install Hook

The install hook will replace the entire default installation process for the
target slot of the image it was specified for. Note that when having the install
hook enabled, pre- and post-install hooks will not be executed and having
an image (i.e. filename set) is optional, too!
The install hook allows to fully customize the way a slot is updated. This
allows performing special installation methods that are not natively supported
by RAUC, for example to upgrade the bootloader to a new version while also
migrating configuration settings.

[hooks]
filename=hook

[image.rootfs]
filename=rootfs.img
size=...
sha256=...
hooks=install

or, without filename:

[hooks]
filename=hook

[image.datafs]
hooks=install

3.7.4. Full Custom Update

For some special tasks (recovery, testing, migration) it might be required to
completely replace the default RAUC update mechanism and to only use its
infrastructure for executing an application or a script on the target side.

For this case, you may replace the entire default installation handler of rauc
by a custom handler script or application.

Refer manifest [handler] section description
on how to achieve this.

3.8. Using the D-Bus API

The RAUC D-BUS API allows seamless integration into existing or
project-specific applications, incorporation with bridge services such as the
rauc-hawkbit client and also the rauc CLI uses it.

The API’s service domain is de.pengutronix.rauc while the object path is
/.

3.8.1. Installing a Bundle

The D-Bus API’s main purpose is to trigger and monitor the installation
process via its Installer interface.

The InstallBundle method call triggers the installation of a given bundle in the
background and returns immediately.
Upon completion of the installation RAUC emits the Completed signal,
indicating either successful or failed installation.
For details on triggering the installation process, see the
The InstallBundle() Method chapter in the
reference documentation.

While the installation is in progress, constant progress information will be
emitted in form of changes to the Progress property.

3.8.2. Processing Progress Data

The progress property will be updated upon each change of the progress value.
For details see the The “Progress” Property
chapter in the reference documentation.

To monitor Progress property changes from your application, attach to the
PropertiesChanged signal and filter on the Operation properties.

Each progress step emitted is a tuple (percentage, message, nesting depth)
describing a tree of progress steps:

├"Installing" (0%)
│ ├"Determining slot states" (0%)
│ ├"Determining slot states done." (20%)
│ ├"Checking bundle" (20%)
│ │ ├"Verifying signature" (20%)
│ │ └"Verifying signature done." (40%)
│ ├"Checking bundle done." (40%)
│ ...
└"Installing done." (100%)

This hierarchical structure allows applications to decide for the appropriate
granularity to display information.
Progress messages with a nesting depth of 1 are only Installing and
Installing done..
A nesting depth of 2 means more fine-grained information while larger depths
are even more detailed.

Additionally, the nesting depth information allows the application to print
tree-like views as shown above.
The percentage value always goes from 0 to 100 while the message is
always a human-readable English string.
For internationalization you may use a
gettext [https://www.gnu.org/software/gettext/]-based approach.

3.8.3. Examples Using busctl Command

Triggering an installation:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer InstallBundle sa{sv} "/path/to/bundle" 0

Mark a slot as good:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer Mark ss "good" "rootfs.0"

Mark a slot as active:

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer Mark ss "active" "rootfs.0"

Get the Operation property containing the current operation:

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer Operation

Get the Progress property containing the progress information:

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer Progress

Get the LastError property, which contains the last error that occurred
during an installation.

busctl get-property de.pengutronix.rauc / de.pengutronix.rauc.Installer LastError

Get the status of all slots

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer GetSlotStatus

Get the current primary slot

busctl call de.pengutronix.rauc / de.pengutronix.rauc.Installer GetPrimary

Monitor the D-Bus interface

busctl monitor de.pengutronix.rauc

3.9. Debugging RAUC

When RAUC fails to start on your target during integration or later during
installation of new bundles it can have a variety of causes.

This section will lead you through the most common options you have for
debugging what actually went wrong.

In each case it is quite essential to know that RAUC, if not compiled with
--disable-service runs as a service on your target that is either
controlled by your custom application or by the RAUC command line interface.

The frontend will always only show the ‘high level’ error output, e.g. when an
installation failed:

rauc-Message: 08:27:12.083: installing /home/enrico/Code/rauc/good-bundle-hook.raucb: LastError: Failed mounting bundle: failed to run mount: Child process exited with code 1
rauc-Message: 08:27:12.083: installing /home/enrico/Code/rauc/good-bundle-hook.raucb: idle
Installing `/home/enrico/Code/rauc/good-bundle-hook.raucb` failed

In simple cases this might be sufficient for identifying the actual problem, in
more complicated cases this may give a rough hint.
For a more detailed look on what went wrong you need to inspect the rauc
service log instead.

If you run RAUC using systemd, the log can be obtained using

journalctl -u rauc

When using SysVInit, your service script needs to configure logging itself.
A common way is to dump the log e.g. /var/log/rauc.

It may also be worth starting the RAUC service via command line on a second
shell to have a live view of what is going on when you invoke e.g. rauc
install on the first shell.

3.9.1. Inspecting Bundle Contents

Sometimes during development, it is useful to check whether the bundle contents
are as expected.
While RAUC bundles could just be mounted as a squashfs, using rauc mount
also uses the same checks and mechanisms as rauc install
(device-mapper/loopback & network support).
The bundle is mounted below the configured mount prefix (/mnt/rauc/bundle by
default).
When you are done, just use umount <mount point> to unmount the bundle.

$ rauc mount /var/tmp/test/good-verity-bundle.raucb
rauc-Message: 12:37:36.869: Reading bundle: /var/tmp/test/good-verity-bundle.raucb
rauc-Message: 12:37:36.889: Verifying bundle signature...
rauc-Message: 12:37:36.894: Verified inline signature by 'O = Test Org, CN = Test Org Release-1'
rauc-Message: 12:37:36.896: Mounting bundle '/var/tmp/test/good-verity-bundle.raucb' to '/mnt/rauc/bundle'
rauc-Message: 12:37:36.931: Configured loop device '/dev/loop0' for 24576 bytes
rauc-Message: 12:37:36.934: Configured dm-verity device '/dev/dm-0'
Mounted bundle at /mnt/rauc/bundle. Use 'umount /mnt/rauc/bundle' to unmount.
$ ls -l /mnt/rauc/bundle
total 21
-rw-r--r-- 1 root root 8192 Jun 21 14:51 appfs.img
-rwxr-xr-x 1 root root 2241 Sep 15 2017 custom_handler.sh
-rwxr-xr-x 1 root root 1421 Aug 31 2017 hook.sh
-rw-r--r-- 1 root root 308 Jun 21 14:51 manifest.raucm
-rw-r--r-- 1 root root 8192 Jun 21 14:51 rootfs.img
$ umount /mnt/rauc/bundle

Note

This command is only intended for use during development.

3.9.2. Increasing Debug Verbosity

Both for the service and the command line interface it is often useful to
increase the log level for narrowing down the actual error cause or gaining
more information about the circumstances when the error occurs.

RAUC uses glib and the
glib logging framework [https://developer.gnome.org/programming-guidelines/stable/logging.html.en] with the basic log domain ‘rauc’.

For simple cases, you can activate logging by passing the -d or --debug option to either the CLI:

rauc install -d bundle.raucb ..

or the service (you might need to modify your systemd or SysVInit
service file).

rauc service -d

For more fine grained and advanced debugging options, use the
G_MESSAGES_DEBUG environment variable.
This allows enabling different log domains. Currently available are:

	all

	enable all log domains

	rauc

	enable default RAUC log domain (same as calling with -d)

	rauc-signature

	enable logging of signature details

This will dump the full CMS structure during verification and can help
identify problems with the signature details.

	rauc-subprocess

	enable logging of subprocess calls

This will dump the entire program call invoked by RAUC and can help tracing
down or reproducing issues caused by other programs invoked.

Example invocation:

G_MESSAGES_DEBUG="rauc rauc-subprocess" rauc service

3.9.2.1. Enabling Verbose CURL Output

If you suspect an issue is related to network access (using the CURL library),
you can set RAUC_CURL_VERBOSE=1.
This will cause RAUC to enable CURLOPT_VERBOSE [https://curl.se/libcurl/c/CURLOPT_VERBOSE.html] when configuring a CURL
context.

3.9.3. Reproducing Issues using QEMU Test Setup

The RAUC source code repository provides a :ref:qemu-test
sec-contributing-qemu-test script, mainly meant to be used for running the
unit tests in a safe environment. But this can also be used to reproduce and
debug basic functionality of rauc.

When running:

$./qemu-test system

you will boot into a QEMU shell that has a mocked RAUC setup allowing you to
inspect status, install procedure, etc.
For example:

root@qemu-test:/home/user/git/rauc# rauc status
=== System Info ===
Compatible: Test Config
Variant:
Booted from: rootfs.0 (A)

=== Bootloader ===
Activated: rootfs.0 (A)

=== Slot States ===
x [rootfs.0] (/dev/root, raw, booted)
 bootname: A
 mounted: /
 boot status: good
 [appfs.0] (/dev/null, raw, active)

o [rootfs.1] (/tmp/rootdev, raw, inactive)
 bootname: B
 boot status: good
 [appfs.1] (/tmp/appdev, raw, inactive)

4. Examples

4.1. Full System Example

This chapter aims to explain the basic concepts needed for RAUC using a simple
but realistic scenario.

The system is x86-based with 1GiB of disk space and 1GiB of RAM. GRUB [https://www.gnu.org/software/grub/] was
selected as the bootloader and we want to have two symmetric installations.
Each installation consists of an ext4 root file system only (which contains the
matching kernel image).

We want to provide update bundles using a USB memory stick. We don’t have a
hardware watchdog, so we need to explicitly tell GRUB [https://www.gnu.org/software/grub/] whether a boot was
successful.

This scenario can be easily reproduced using a QEMU [http://wiki.qemu.org/] virtual machine.

4.1.1. PKI Setup

RAUC uses an x.509 PKI (public key infrastructure) to sign and verify updates.
To create a simple key pair for testing, we can use openssl:

> openssl req -x509 -newkey rsa:4096 -nodes -keyout demo.key.pem -out demo.cert.pem -subj "/O=rauc Inc./CN=rauc-demo"

For actual usage, setting up a real PKI (with a CA separate from the signing
keys and a revocation infrastructure) is strongly recommended. OpenVPN’s
easy-rsa [https://github.com/OpenVPN/easy-rsa] is a good first step. See Security for more details.

4.1.2. RAUC Configuration

We need a RAUC system configuration file to describe the slots which can be
updated

[system]
compatible=rauc-demo-x86
bootloader=grub
mountprefix=/mnt/rauc
bundle-formats=-plain

[keyring]
path=demo.cert.pem

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

In this case, we need to place the signing certificate into
/etc/rauc/demo.cert.pem, so that it is used by RAUC for verification.

4.1.3. GRUB Configuration

GRUB itself is stored on /dev/sda1, separate from the root file system. To
access GRUB’s environment file, this partition should be mounted to /boot
(which means that the environment file is found at /boot/grub/grubenv).

GRUB does not provide the boot target selection logic as needed by RAUC
out of the box. Instead we use a script to implement it

default=0
timeout=3

set ORDER="A B"
set A_OK=0
set B_OK=0
set A_TRY=0
set B_TRY=0
load_env

select bootable slot
for SLOT in $ORDER; do
 if ["$SLOT" == "A"]; then
 INDEX=0
 OK=$A_OK
 TRY=$A_TRY
 A_TRY=1
 fi
 if ["$SLOT" == "B"]; then
 INDEX=1
 OK=$B_OK
 TRY=$B_TRY
 B_TRY=1
 fi
 if ["$OK" -eq 1 -a "$TRY" -eq 0]; then
 default=$INDEX
 break
 fi
done

reset booted flags
if ["$default" -eq 0]; then
 if ["$A_OK" -eq 1 -a "$A_TRY" -eq 1]; then
 A_TRY=0
 fi
 if ["$B_OK" -eq 1 -a "$B_TRY" -eq 1]; then
 B_TRY=0
 fi
fi

save_env A_TRY B_TRY

CMDLINE="panic=60 quiet"

menuentry "Slot A (OK=$A_OK TRY=$A_TRY)" {
 linux (hd0,2)/kernel root=/dev/sda2 $CMDLINE rauc.slot=A
}

menuentry "Slot B (OK=$B_OK TRY=$B_TRY)" {
 linux (hd0,3)/kernel root=/dev/sda3 $CMDLINE rauc.slot=B
}

GRUB since 2.02-beta1 supports the eval command, which can be used
to express the logic above more concisely.

The grubenv file can be modified using grub-editenv, which is shipped
by GRUB. It can also be used to inspect the current contents:

> grub-editenv /boot/grub/grubenv list
ORDER="A B"
A_OK=0
B_OK=0
A_TRY=0
B_TRY=0

The initial installation of the bootloader and rootfs on the system is out of
scope for RAUC. A common approach is to generate a complete disk image
(including the partition table) using a build system such as
OpenEmbedded/Yocto, PTXdist or buildroot.

4.1.4. Bundle Generation

To create a bundle, we need to collect the components which should become part
of the update in a directory (in this case only the root file system image):

> mkdir temp-dir/
> cp …/rootfs.ext4.img temp-dir/

Next, to describe the bundle contents to RAUC, we create a manifest file.
This must be named manifest.raucm:

> cat >> temp-dir/manifest.raucm << EOF
[update]
compatible=rauc-demo-x86
version=2015.04-1

[bundle]
format=verity

[image.rootfs]
filename=rootfs.ext4.img
EOF

Note that we can omit the sha256 and size parameters for the image
here, as RAUC will fill them out automatically when creating the bundle.

Finally, we run RAUC to create the bundle:

> rauc --cert demo.cert.pem --key demo.key.pem bundle temp-dir/ update-2015.04-1.raucb
> rm -r temp-dir

We now have the update-2015.04-1.raucb bundle file, which can be copied onto the
target system, in this case using a USB memory stick.

4.1.5. Update Installation

Having copied update-2015.04-1.raucb onto the target, we only need to run RAUC:

> rauc install /mnt/usb/update-2015.04-1.raucb

After cyptographically verifying the bundle, RAUC will now determine the
active slots by looking at the rauc.slot variable. Then, it can select the
target slot for the update image from the inactive slots.

When the update is installed completely, we just need to restart the system. GRUB
will then try to boot the newly installed rootfs. Finally, if the boot was
successful, we need to inform the bootloader:

> rauc status mark-good

If systemd [http://www.freedesktop.org/wiki/Software/systemd/] is available, it is useful to run this command late in the boot
process and declare dependencies on the main application(s).

If the boot is not marked as successful, GRUB will try the other installation
on the next boot. By configuring the kernel and systemd to reboot on
critical errors and by using a (software) watchdog, hangs in a non-working
installation can be avoided.

4.1.6. Write Slots Without Update Mechanics

Assuming an image has been copied to or exists on the target, a manual slot
write can be performed by:

> rauc write-slot rootfs.0 rootfs.ext4

This will write the rootfs image rootfs.ext4 to the slot rootfs.0. Note
that this bypasses all update mechanics like hooks, slot status etc.

4.2. Example Slot Configurations

This provides some common examples on how to configure slots in your
system.conf for different scenarios.

4.2.1. Symmetric A/B Setup

This is the default case when having a fully-redundant root file system

[...]

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

4.2.2. Asymmetric A/Recovery Setup

In case storage is too restricted for a full A/B redundancy setup, an
asymmetric setup with a dedicated update/recovery slot can be used.
The recovery slot can be way smaller than the rootfs one as it needs to contain
only the tools for updating the rootfs slot.
Because the recovery slot is not meant to be updated in most cases, we can
manifest this for RAUC by setting the readonly=true option.

[...]

[slot.recovery.0]
device=/dev/sda2
type=ext4
bootname=R
readonly=true

[slot.rootfs.0]
device=/dev/sda3
type=ext4
bootname=A

4.2.3. Separate Application Partition

RAUC allows to have a separate redundant set of slots for the application (or
other purpose) that have a fixed relation to their corresponding rootfs slots.
RAUC assures that an update of the entire slot group (rootfs + appfs) is
atomic.

When defining appfs slots, be sure to set the correct parent relation to the
associated bootable slot.

[...]

[slot.rootfs.0]
device=/dev/sda2
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/sda3
type=ext4
bootname=B

[slot.appfs.0]
parent=rootfs.0
device=/dev/sda4
type=ext4

[slot.appfs.1]
parent=rootfs.1
device=/dev/sda5
type=ext4

4.2.4. Atomic Bootloader Updates (eMMC)

Updating the Bootloader is also possible with RAUC, despite this is a bit more
critical than updating the rootfs, as there is no fallback mechanism.

However, depending on the ROM loader it can at least be possible to perform the
bootloader update atomically.
The most common example for this is using the two boot partitions of an eMMC
for atomic bootloader updates which RAUC supports out-of-the-box
(refer Update eMMC Boot Partitions).

[...]

[slot.bootloader.0]
device=/dev/mmcblk0
type=boot-emmc

[slot.rootfs.0]
device=/dev/mmcblk0p1
type=ext4
bootname=A

[slot.rootfs.1]
device=/dev/mmcblk0p2
type=ext4
bootname=B

4.2.5. Symmetric A/B Setup + Recovery

Booting into the recovery slot should normally be handled by the bootloader
if it fails to load the symmetric slots.

Thus from the RAUC perspective this setup is identical to the default A/B
setup.

Anyway, you can still define it as a slot if you need to be able to provide
an update for this, too.

4.3. Example BSPs

	Yocto

	PTXdist

5. Scenarios

5.1. Symmetric Root-FS Slots

This is the probably the most common setup.
In this case, two root partitions of the same size are used (often called “A”
and “B”).
When running from “A”, an update is installed into “B” and vice versa.
Both slots are intended to contain equivalent software, including the main
application.

To reduce complexity, the kernel and other files necessary for booting the
system (such as the device tree) are stored in the root-fs partition (usually in
/boot).
This requires a boot-loader with support for the root-fs type.

The RAUC system.conf would contain two slots similar to the following:

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system-a

[slot.rootfs.1]
device=/dev/sda1
type=ext4
bootname=system-b

The main advantage of this setup is its simplicity:

	An update can be started when running in either slot and while the main
application is still active.

	The fallback logic in the boot-loader can be relatively simple.

	Easy to understand update process for end-users and technicians.

The main reasons for not using it are either:

	Too limited storage space (use asymmetric slots instead)

	Additional requirements regarding redundancy or update flexibility (see below)

5.2. Asymmetric Slots

This setup is useful if the storage space is very limited.
Instead of requiring two partitions each large enough for the full installation,
a small partition is used instead of the second one (often called “main” and
“update” or “rescue”).

The slot configuration for this in system.conf could look like this:

[slot.update.0]
device=/dev/sda0
type=raw
bootname=update

[slot.main.1]
device=/dev/sda1
type=ext4
bootname=main

To update the main system, a reboot into the update system is needed (as otherwise
the main slot would still be active).
Then, the update system would trigger the installation into the main slot and
finally switch back to the newly updated main system.
The update system itself can be updated directly from the running main system.

Some disadvantages of this configuration are:

	Two reboots are required for an update.

	A failed update results in an unavailable main application until a subsequent
update is installed successfully.

	If some data in the main slot needs to be preserved during the update, it must
be stored somewhere else before writing the new image to the slot and then
restored.

As the update system is normally small enough to fit completely into RAM, it can
be stored as a Linux kernel with internal initramfs.
This avoids compressing kernel and user-space separately, increasing the
compression ratio.
For this, the update slot type should be configured to raw.

5.3. Multiple Slots

Splitting a system into multiple slots can be useful if the application should
be updated independently of the base system.
This can be combined with either symmetric or asymmetric setups as described
above.

For example, the main application could be split of from the root file-system.
This can be useful if the base system is developed independently from the
application(s) or by a different team.
By explicitly distinguishing between the two, different versions of the
application or even completely different applications can reuse the same base
system (root-file-system).

Another reason to configure multiple slots for one system can be to store the
boot files (kernel, …) separately, which can help reduce boot time and
complexity in the boot-loader.

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system-a

[slot.appfs.0]
device=/dev/sda1
type=ext4
parent=rootfs.0

[slot.rootfs.1]
device=/dev/sdb0
type=ext4
bootname=system-b

[slot.appfs.1]
device=/dev/sdb1
type=ext4
parent=rootfs.1

Warning

Currently, RAUC has no way to ensure compatibility between rootfs and appfs
when installing a bundle containing only an image for one of them.
Either always build bundles containing images for all required slots or
ensure that incompatible updates are not installed outside of RAUC.
To solve this, a bundle would need to contain the metadata (size and hash)
for the missing bundle and RAUC would need to verify the state of those slots
before installing the bundle.

5.4. Additional Rescue Slot

By adding an additional rescue (or recovery) slot to one of the symmetric
scenarios above, the robustness against some error cases can be improved:

	A software error has remained undetected over some releases, rendering both
normal slots inoperable over time.

	The normal slots are mounted read-write during normal operation and have
become corrupted (for example by incorrect handling of sudden power failures).

	A configuration error causes both normal slots to fail in the same way.

[slot.rescue.0]
device=/dev/sda0
type=raw
bootname=rescue

[slot.rootfs.0]
device=/dev/sda1
type=ext4
bootname=system-a

[slot.rootfs.1]
device=/dev/sda2
type=ext4
bootname=system-b

The rescue slot would not be changed by normal updates (which only write to A
and B in turn).
Depending on the use case, the boot-loader would start the rescue system after
repeated boot failures of the normal systems or on user request.

6. Integration

	RAUC System Configuration

	Slot Configuration

	Library Dependencies

	Kernel Configuration

	Required Host Tools

	Required Target Tools

	Interfacing with the Bootloader

	Booted Slot Detection

	Barebox

	U-Boot

	GRUB

	EFI

	Custom

	Init System and Service Startup

	Systemd Integration

	D-Bus Integration

	Watchdog Configuration

	Yocto

	Target System Setup

	Using RAUC on the Host System

	Bundle Generation

	PTXdist

	Integration into Your RootFS Build

	Create Update Bundles from your RootFS

	Buildroot

	Bundle Format Migration

If you intend to prepare your platform for using RAUC as an update framework,
this chapter will guide you through the required steps and show the different
ways you can choose.

To integrate RAUC, you first need to be able to build RAUC as both a host and a
target application.
The host application is needed for generating update bundles while the target
application or service performs the core task of RAUC:
updating you device.

In an update system, a lot of components have to play together and have to be
configured appropriately to interact correctly.
In principle, these are:

	Hardware setup, devices, partitions, etc.

	The bootloader

	The Linux kernel

	The init system

	System utilities (mount, mkfs, …)

	The update tool, RAUC itself

Note

When integrating RAUC into your embedded Linux system, and in general,
we highly recommend using a Linux system build system like Yocto /
OpenEmbedded or PTXdist that allows you to have well defined software states
while easing integration of the different components involved.

For information about how to integrate RAUC using these tools,
refer to the sections Yocto or PTXdist.

6.1. RAUC System Configuration

The system configuration file is the central configuration in RAUC that
abstracts the loosely coupled storage setup, partitioning and boot strategy of
your board to a coherent redundancy setup world view for RAUC.

RAUC expects its central configuration file /etc/rauc/system.conf to
describe the system it runs on in a way that all relevant information for
performing updates and making decisions are given.

Note

For a full reference of the system.conf file refer to section
System Configuration File.

Similar to other configuration files used by RAUC,
the system configuration uses a key-value syntax (similar to those known from
.ini files).

6.1.1. Slot Configuration

The most important step is to describe the slots that RAUC should use
when performing updates.
Which slots are required and what you have to take care of when designing your
system will be covered in the chapter Scenarios.
This section assumes that you have already decided on a setup and want to
describe it for RAUC.

A slot is defined by a slot section.
The naming of the section must follow a simple format:
[slot.<slot-class>.<slot-index>]
where <slot-class> describes a class of possibly multiple redundant slots
(such as rootfs, recovery or appfs)
and slot-index is the index of the individual slot instance,
starting with index 0.

If you have two redundant slots used for the root file system, for example,
you should name your sections according to this example:

[slot.rootfs.0]
device = [...]

[slot.rootfs.1]
device = [...]

RAUC does not have predefined class names. The only requirement is that the
class names used in the system config match those you later use in the update
manifests.

The mandatory settings for each slot are:

	the device that holds the (device) path describing where the slot is
located,

	the type that defines how to update the target device.

If the slot is bootable, then you also need

	the bootname which is the name the bootloader uses to refer to this slot
device.

6.1.1.1. Slot Type

A list of slot storage types currently supported by RAUC:

	Type

	Description

	Tar support

	raw

	A partition holding no (known) file system. Only raw image copies
may be performed.

	

	ext4

	A block device holding an ext4 filesystem.

	x

	nand

	A raw NAND flash partition.

	

	nor

	A raw NOR flash partition.

	

	ubivol

	An UBI partition in NAND.

	

	ubifs

	An UBI volume containing an UBIFS in NAND.

	x

	vfat

	A block device holding a vfat filesystem..

	x

Depending on this slot storage type and the slot’s image filename
extension, RAUC determines how to extract the image content to the target slot.

While the generic filename extension .img is supported for all filesystems,
it is strongly recommended to use explicit extensions (e.g. .vfat or .ext4)
when possible, as this allows checking during installation that the slot type is correct.

6.1.1.2. Grouping Slots

If multiple slots belong together in a way that they always have to be updated
together with the respective other slots, you can ensure this by grouping slots.

A group must always have a single bootable slot, then all other slots define a
parent relationship to this bootable slot as follows:

[slot.rootfs.0]
...

[slot.appfs.0]
parent = rootfs.0
...

[slot.rootfs.1]
...

[slot.appfs.1]
parent = rootfs.1
...

6.2. Library Dependencies

The minimal requirement for RAUC regardless of whether intended for the host or
target side is GLib (minimum version 2.45.8) as utility library and OpenSSL
(>=1.0) for signature handling.

Note

In order to let RAUC detect mounts correctly, GLib must be compiled
with libmount support (--enable-libmount) and at least be 2.49.5.

For network support (enabled with --enable-network), additionally libcurl
is required. This is only useful for the target service.

For JSON-style support (enabled with --enable-json), additionally
libjson-glib is required.

6.3. Kernel Configuration

The kernel used on the target device must support both loop block devices and the
SquashFS file system to allow installing RAUC bundles. For the recommended
verity bundle format, dm-verity must be supported as
well.

In kernel Kconfig you have to enable the following options:

CONFIG_MD=y
CONFIG_BLK_DEV_DM=y
CONFIG_BLK_DEV_LOOP=y
CONFIG_DM_VERITY=y
CONFIG_SQUASHFS=y
CONFIG_CRYPTO_SHA256=y

For streaming support, you have to add CONFIG_BLK_DEV_NBD.

Note

These drivers may also be loaded as modules. Kernel versions v5.0 to v5.7
will require the patch 7e81f99afd91c937f0e66dc135e26c1c4f78b003
backporting to fix a bug where the bundles cannot be mounted in a small
number of cases.

Note

On ARM SoCs, there are optimized alternative SHA256 implementations
available (for example CONFIG_CRYPTO_SHA2_ARM_CE, CRYPTO_SHA256_ARM
or hardware accellerators such as CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API).

6.4. Required Host Tools

To be able to generate bundles, RAUC requires at least the following host tools:

	mksquashfs

	unsquashfs

When using the RAUC casync integration, the casync tool and fakeroot
(for converting archives to directory tree indexes) must also be available.

6.5. Required Target Tools

RAUC requires and uses a set of target tools depending on the type of supported
storage and used image type.

Mandatory tools for each setup are mount and umount, either from
Busybox [http://www.busybox.net] or
util-linux [https://cdn.kernel.org/pub//linux/utils/util-linux/]

Note that build systems may handle parts of these dependencies automatically,
but also in this case you will have to select some of them manually as RAUC
cannot fully know how you intend to use your system.

	NAND Flash

	flash_erase & nandwrite (from mtd-utils)

	NOR Flash

	flash_erase & flashcp (from mtd-utils)

	UBIFS

	mkfs.ubifs (from mtd-utils)

	TAR archives

	You may either use GNU tar [http://www.gnu.org/software/tar/]
or Busybox tar [http://www.busybox.net].

If you intend to use Busybox tar, make sure format autodetection and also the
compression formats you use are enabled:

	CONFIG_FEATURE_TAR_AUTODETECT=y

	CONFIG_FEATURE_TAR_LONG_OPTIONS=y

	select needed CONFIG_FEATURE_SEAMLESS_*=y options

	ext4

	mkfs.ext4 (from e2fsprogs)

	vfat

	mkfs.vfat (from dosfstools [https://github.com/dosfstools/dosfstools])

Depending on the bootloader you use on your target, RAUC also needs the right
tool to interact with it:

	Barebox

	barebox-state
(from dt-utils [https://git.pengutronix.de/cgit/tools/dt-utils/])

	U-Boot

	fw_setenv/fw_getenv (from u-boot [http://git.denx.de/?p=u-boot.git;a=summary])

	GRUB

	grub-editenv

	EFI

	efibootmgr

Note that for running rauc info on the target (as well as on the host), you
also need to have the unsquashfs tool installed.

When using the RAUC casync integration, the casync tool must also be
available.

6.6. Interfacing with the Bootloader

RAUC provides support for interfacing with different types of bootloaders.
To select the bootloader you have or intend to use on your system, set the
bootloader key in the [system] section of your device’s system.conf.

Note

If in doubt about choosing the right bootloader, we recommend to use
barebox [https://barebox.org/]
as it provides a dedicated boot handling framework, called
bootchooser [https://barebox.org/doc/latest/user/bootchooser.html].

To let RAUC handle a bootable slot, you have to mark it as bootable in your
system.conf and configure the name under which the bootloader identifies this
specific slot.
This is both done by setting the bootname property.

[slot.rootfs.0]
...
bootname=system0

Amongst others, the bootname property also serves as one way to let RAUC know which slot is
currently booted (running).
In the following, the different options for letting RAUC detect the currently
booted slot are described.

6.6.1. Booted Slot Detection

For RAUC it is quite essential to know from which slot the system is currently
running.
We will refer this as the booted slot.
Only reliable detection of the booted slot enables RAUC to determine the set of
currently inactive slots (that it can safely write to).

If possible, one should always prefer to signal the active slot explicitly from
the bootloader to the userspace and RAUC.
Only for cases where this explicit way is not possible or unwanted, some
alternative approaches of automatically detecting the currently booted slot
are implemented in RAUC.

A detailed list of detection mechanism follows.

6.6.1.1. Identification via Kernel Commandline

RAUC evaluates different kernel commandline parameters in the order they are
listed below.

rauc.slot= and rauc.external

This is the generic way to explicitly set information about which slot was
booted by the bootloader.
For slots that are handled by a bootloader slot selection mechanism (such as
A+B slots) you should specify the slot’s configured bootname:

rauc.slot=system0

For special cases where some slots are not handled by the slot selection
mechanism (such as a ‘last-resort’ recovery fallback that never gets explicitly
selected) you can also give the name of the slot:

rauc.slot=recovery.0

When booting from a source not configured in your system.conf (for example from
a USB memory stick), you can tell rauc explicitly with the flag
rauc.external.
This means that all slots are known to be inactive and will be valid
installation targets.
A possible use case for this is to use RAUC during a bootstrapping procedure to
perform an initial installation.

bootchooser.active=

This is the command-line parameter used by barebox’s bootchooser mechanism.
It will be set automatically by the bootchooser framework and does not need any
manual configuration.
RAUC compares this against each slot’s bootname (not the slot’s name as above):

bootchooser.active=system0

root=

If none of the above parameters is given, the root= parameter is evaluated
by RAUC to gain information on the currently booted system.
The root= entry contains the device from which device the kernel (or
initramfs) should load the rootfs.
RAUC supports parsing different variants for giving these device as listed below.

root=/dev/sda1
root=/dev/ubi0_1

Giving the plain device name is supported, of course.

Note

The alternative ubi rootfs format with root=ubi0:volname is currently
unsupported.
If you want to refer to UBI volumes via name in your system.conf, check
the FAQ entry How can I refer to devices if the numbering is not fixed?.

root=PARTLABEL=abcde
root=PARTUUID=01234
root=UUID=01234

Parsing the PARTLABEL, PARTUUID and UUID is supported, which allows
referring to a special partition / file system without having to know the
enumeration-dependent sdX name.

RAUC converts the value to the corresponding /dev/disk/by-* symlink name
and then to the actual device name.

root=/dev/nfs

RAUC automatically detects NFS boots (by checking if this parameter is set in
the kernel command line).
There is no extra slot configuration needed for this as RAUC assumes it is safe
to update all available slots in case the currently running system comes from
NFS.

systemd.verity_root_data=

RAUC handles the systemd.verity_root_data= parameter the same as root=
above.
See the systemd-veritysetup-generator documentation [https://www.freedesktop.org/software/systemd/man/systemd-veritysetup-generator.html#systemd.verity_root_data=]
for details.

6.6.2. Barebox

The Barebox [http://www.barebox.org] bootloader,
which is available for many common embedded platforms,
provides a dedicated boot source selection framework, called bootchooser,
backed by an atomic and redundant storage backend, named state.

Barebox state allows you to save the variables required by bootchooser with
memory specific storage strategies in all common storage mediums,
such as block devices, mtd (NAND/NOR), EEPROM, and UEFI variables.

The Bootchooser framework maintains information about priority and remaining
boot attempts while being configurable on how to deal with them for different
strategies.

To enable the Barebox bootchooser support in RAUC, select it in your
system.conf:

[system]
...
bootloader=barebox

6.6.2.1. Configure Barebox

As mentioned above, Barebox support requires you to have the bootchooser
framework with barebox state backend enabled.
In Barebox’ Kconfig you can enable this by setting:

CONFIG_BOOTCHOOSER=y
CONFIG_STATE=y
CONFIG_STATE_DRV=y

To debug and interact with bootchooser and state in Barebox,
you should also enable these tools:

CONFIG_CMD_STATE=y
CONFIG_CMD_BOOTCHOOSER=y

6.6.2.2. Setup Barebox Bootchooser

The barebox bootchooser framework allows you to specify a number of redundant
boot targets that should be automatically selected by an algorithm,
based on status information saved for each boot target.

The bootchooser itself can be used as a Barebox boot target.
This is where we start by setting the barebox default boot target to
bootchooser:

nv boot.default="bootchooser"

Now, when Barebox is initialized it starts the bootchooser logic to select its
real boot target.

As a next step, we need to tell bootchooser which boot targets it should
handle. These boot targets can have descriptive names which must not equal any of
your existing boot targets, we will have a mapping for this later on.

In this example we call the virtual bootchooser boot targets system0 and
system1:

nv bootchooser.targets="system0 system1"

Now connect each of these virtual boot targets to a real Barebox boot target
(one of its automagical ones or custom boot scripts):

nv bootchooser.system0.boot="nand0.ubi.system0"
nv bootchooser.system1.boot="nand0.ubi.system1"

To configure bootchooser to store the variables in Barebox state, you need to configure the state_prefix:

nv bootchooser.state_prefix="state.bootstate"

Beside this very basic configuration variables, you need to set up a set of
other general and slot-specific variables.

Warning

It is highly recommended to read the full Barebox bootchooser
documentation [http://barebox.org/doc/latest/user/bootchooser.html]
in order to know about the requirements and possibilities in fine-tuning the
behavior according to your needs.

Also make sure to have these nv settings in your compiled-in environment,
not in your device-local environment.

6.6.2.3. Setting up Barebox State for Bootchooser

For storing its status information, the bootchooser framework requires a
barebox,state instance to be set up with a set of variables matching the set
of virtual boot targets defined.

To allow loading the state information in a well-defined format both from
Barebox and from the kernel,
we store the state data format definition in the Barebox devicetree.

Barebox fixups the information into the Linux devicetree when loading the
kernel.
This assures having a consistent view on the variables in Barebox and Linux.

An example devicetree node for our simple redundant setup will have the
following basic structure

state {
 bootstate {
 system0 {
 ...
 };
 system1 {
 ...
 };
 };
};

In the state node, we set the appropriate compatible to tell the barebox,state
driver to care for it and define where and how we want to store our data.
This will look similar to this:

state: state {
 magic = <0x4d433230>;
 compatible = "barebox,state";
 backend-type = "raw";
 backend = <&state_storage>;
 backend-stridesize = <0x40>;
 backend-storage-type = "circular";
 #address-cells = <1>;
 #size-cells = <1>;

 [...]
}

where <&state_storage> is a phandle to, e.g. an EEPROM or NAND partition.

Important

The devicetree only defines where and in which format the data will
be stored. By default, no data will be stored in the deviectree itself!

The rest of the variable set definition will be made in the bootstate
subnode.

For each virtual boot target handled by state,
two uint32 variables remaining_attempts and priority need to be
defined.:

bootstate {

 system0 {
 #address-cells = <1>;
 #size-cells = <1>;

 remaining_attempts@0 {
 reg = <0x0 0x4>;
 type = "uint32";
 default = <3>;
 };
 priority@4 {
 reg = <0x4 0x4>;
 type = "uint32";
 default = <20>;
 };
 };

 [...]
};

Note

As the example shows, you must also specify some useful default variables the
state driver will load in case of uninitialized backend storage.

Additionally one single variable for storing information about the last chosen
boot target is required:

bootstate {

 [...]

 last_chosen@10 {
 reg = <0x10 0x4>;
 type = "uint32";
 };
};

Warning

This example shows only a highly condensed excerpt of setting up Barebox
state for bootchooser.
For a full documentation on how Barebox state works and how to properly
integrate it into your platform see the official Barebox State Framework
user documentation [http://www.barebox.org/doc/latest/user/state.html]
as well as the corresponding
devicetree binding [http://www.barebox.org/doc/latest/devicetree/bindings/barebox/barebox,state.html]
reference!

You can verify your setup by calling devinfo state from Barebox,
which would print this for example:

barebox@board:/ devinfo state
Parameters:
bootstate.last_chosen: 2 (type: uint32)
bootstate.system0.priority: 10 (type: uint32)
bootstate.system0.remaining_attempts: 3 (type: uint32)
bootstate.system1.priority: 20 (type: uint32)
bootstate.system1.remaining_attempts: 3 (type: uint32)
dirty: 0 (type: bool)
save_on_shutdown: 1 (type: bool)

Once you have set up bootchooser properly, you finally need to enable RAUC to
interact with it.

6.6.2.4. Enable Accessing Barebox State for RAUC

For this, you need to specify which (virtual) boot target belongs to which
of the RAUC slots you defined.
You do this by assigning the virtual boot target name to the slots bootname
property:

[slot.rootfs.0]
...
bootname=system0

[slot.rootfs.1]
...
bootname=system1

For writing the bootchooser’s state variables from userspace,
RAUC uses the tool barebox-state from the
dt-utils [https://git.pengutronix.de/cgit/tools/dt-utils/] repository.

Note

RAUC requires dt-utils version v2017.03 or later!

Make sure to have this tool integrated on your target platform.
You can verify your setup by calling it manually:

barebox-state -d
bootstate.system0.remaining_attempts=3
bootstate.system0.priority=10
bootstate.system1.remaining_attempts=3
bootstate.system1.priority=20
bootstate.last_chosen=2

6.6.2.5. Verify Boot Slot Detection

As detecting the currently booted rootfs slot from userspace and matching it to
one of the slots defined in RAUC’s system.conf is not always trivial and
error-prone, Barebox provides an explicit information about which slot it
selected for booting adding a bootchooser.active key to the commandline of
the kernel it boots. This key has the virtual bootchooser boot target assigned.
In our case, if the bootchooser logic decided to boot system0 the kernel
commandline will contain:

bootchooser.active=system0

RAUC uses this information for detecting the active booted slot (based on the
slot’s bootname property).

If the kernel commandline of your booted system contains this line, you have
successfully set up bootchooser to boot your slot:

$ cat /proc/cmdline

6.6.3. U-Boot

To enable handling of redundant booting in U-Boot, manual scripting is
required.
U-Boot allows storing and modifying variables in its Environment.
Properly configured, the environment can be accessed both from U-Boot itself as
well as from Linux userspace.
U-Boot also supports setting up the environment redundantly for atomic
modifications.

The default RAUC U-Boot boot selection implementation requires a U-Boot
boot script using specific set of variables that are persisted to the
environment as stateful slot selection information.

To enable U-Boot support in RAUC, select it in your system.conf:

[system]
...
bootloader=uboot

6.6.3.1. Set up U-Boot Boot Script for RAUC

U-Boot as the bootloader needs to decide which slot (partition) to boot.
For this decision it needs to read and process some state information set by
RAUC or previous boot attempts.

The U-Boot bootloader interface of RAUC will rely on setting the following
U-Boot environment variables:

	BOOT_ORDER

	Contains a space-separated list of boot names in
the order they should be tried, e.g. A B.

	BOOT_<bootname>_LEFT

	Contains the number of remaining boot
attempts to perform for the respective slot.

An example U-Boot script for handling redundant A/B boot setups is located in
the contrib/ folder of the RAUC source repository (contrib/uboot.sh).

Note

You must adapt the script’s boot commands to match the requirements
of your platform.

You should integrate your boot selection script as boot.scr default boot
script into U-Boot.

For this you have to convert it to a U-boot readable default script
(boot.scr) first:

mkimage -A arm -T script -C none -n "Boot script" -d <path-to-input-script> boot.scr

If you place this on a partition next to U-Boot, it will use it as its boot
script.

For more details, refer the
U-Boot Scripting Capabilities [https://www.denx.de/wiki/DULG/UBootScripts]
chapter in the U-Boot user documentation.

The example script uses the names A and B as the bootname for the two
different boot targets.
These names need to be set in your system.conf as the bootname of the
respective slots.
The resulting boot attempts variables will be BOOT_A_LEFT and
BOOT_B_LEFT.
The BOOT_ORDER variable will contain A B if A is the primary slot or
B A if B is the primary slot to boot.

Note

For minor changes in boot logic or variable names simply change the boot
script and/or the RAUC system.conf bootname settings.
If you want to implement a fully different behavior, you might need to modify
the uboot_set_state() and uboot_set_primary()
functions in src/bootchooser.c of RAUC.

6.6.3.2. Setting up the (Fail-Safe) U-Boot Environment

The U-Boot environment is used to store stateful boot selection information and
serves as the interface between userspace and bootloader.
The information stored in the environment needs to be preserved, even if the
bootloader should be updated.
Thus the environment should be placed outside the bootloader partition!

The storage location for the environment can be controlled with
CONFIG_ENV_IS_IN_* U-Boot Kconfig options like CONFIG_ENV_IS_IN_FAT or
CONFIG_ENV_IS_IN_MMC.
You may either select a different storage than your bootloader, or a different
location/partition/volume on the same storage.

For fail-safe (atomic) updates of the environment, U-Boot can use redundant
environments that allow to write to one copy while keeping the other as
fallback if writing fails, e.g. due to sudden power cut.

In order to enable redundant environment storage, you have to additionally set in your U-Boot config:

CONFIG_SYS_REDUNDAND_ENVIRONMENT=y
CONFIG_ENV_SIZE=<size-of-env>
CONFIG_ENV_OFFSET=<offset-in-device>
CONFIG_ENV_OFFSET_REDUND=<copy-offset-in-device>

Note

Above switches refer to U-Boot >= v2020.01.

Refer to U-Boot source code and README for more details on this.

6.6.3.3. Enable Accessing U-Boot Environment from Userspace

To enable reading and writing of the U-Boot environment from Linux userspace,
you need to have:

	U-Boot target tools fw_printenv and fw_setenv available on your devices rootfs.

	Environment configuration file /etc/fw_env.config in your target root filesystem.

See the corresponding
HowTo [https://www.denx.de/wiki/DULG/HowCanIAccessUBootEnvironmentVariablesInLinux]
section from the U-Boot documentation for more details on how to set up the
environment config file for your device.

6.6.3.4. Example: Setting up U-Boot Environment on eMMC/SD Card

For this example we assume a simple redundancy boot partition layout with a
bootloader partition and two rootfs partitions.

Another additional partition we use exclusively for storing the environment.

Note

It is not strictly required to have the env on an actual MBR/GPT
partition, but we use this here as it better protects against accidentally
overwriting relevant data of other partitions.

Partition table (excerpt with partition offsets):

/dev/mmcblk0p1 StartLBA: 8192 -> u-boot etc.
/dev/mmcblk0p2 StartLBA: 114688 -> u-boot environment
/dev/mmcblk0p3 StartLBA: 139264 -> rootfs A
/dev/mmcblk0p4 StartLBA: 475136 -> rootfs B

We enable redundant environment and storage in MMC (not in vfat/ext4 partition)
in the u-boot config:

CONFIG_SYS_REDUNDAND_ENVIRONMENT=y
CONFIG_ENV_IS_IN_MMC=y

The default should be to use mmc device 0 and HW partition 0.
Since U-Boot 2020.10.0 we can set this also explicitly if required:

CONFIG_SYS_MMC_ENV_DEV=0
CONFIG_SYS_MMC_ENV_PART=0

Important

With CONFIG_SYS_MMC_ENV_PART we can specify a eMMC HW
partition only, not an MBR/GPT partition!
HW partitions are e.g. 0=user data area, 1=boot partition.

Then we must specify the env storage size and its offset relative to the
currently used device.
Here the device is the eMMC user data area (or SD Card).
For placing the content in partition 2 now, we must calculate the offset as
offset=hex(n sector * 512 bytes/sector).
With n=114688 (start of /dev/mmcblk0p2 according to above partition table)
we get an offset of 0x3800000.
As size we pick 0x4000 (16kB) here. The offset of the redundant copy must
be the offset of the first copy + size of first copy. This results in:

CONFIG_ENV_SIZE=0x4000
CONFIG_ENV_OFFSET=0x3800000
CONFIG_ENV_OFFSET_REDUND=0x3804000

Finally, we need to configure userspace to access the same location.
This can be referenced directly by its partition device name (/dev/mmcblk0p2)
in the /etc/fw_env.config:

/dev/mmcblk0p2 0x0000 0x4000
/dev/mmcblk0p2 0x4000 0x4000

6.6.4. GRUB

[system]
...
bootloader=grub

To enable handling of redundant booting in GRUB, manual scripting is required.

The GRUB bootloader interface of RAUC uses the GRUB environment variables
<bootname>_OK, <bootname>_TRY and ORDER.

An exemplary GRUB configuration for handling redundant boot setups is located in the
contrib/ folder of the RAUC source repository (grub.conf). As the GRUB
shell only has limited support for scripting, this example uses only one try
per enabled slot.

To enable reading and writing of the GRUB environment, you need to have the tool
grub-editenv available on your target.

By default RAUC expects the grubenv file to be located at
/boot/grub/grubenv, you can specify a custom directory by passing
grubenv=/path/to/grubenv in your system.conf [system] section.

Make sure that the grubenv file is located outside your redundant rootfs
partitions as the rootfs needs to be exchangeable without affecting the
environment content.
For UEFI systems, a proper location would be to place it on the EFI partition,
e.g. at /EFI/BOOT/grubenv.
The same partition can also be used for your grub.cfg (which could be
placed at /EFI/BOOT/grub.cfg).

6.6.5. EFI

For x86 systems that directly boot via EFI/UEFI, RAUC supports interaction with
EFI boot entries by using the efibootmgr tool. To enable EFI bootloader
support in RAUC, write in your system.conf:

[system]
...
bootloader=efi

To set up a system ready for pure EFI-based redundancy boot without any further
bootloader or initramfs involved, you have to create an appropriate
partition layout and matching boot EFI entries.

Assuming a simple A/B redundancy, you would need:

	2 redundant EFI partitions holding an EFI stub kernel
(e.g. at EFI/LINUX/BZIMAGE.EFI)

	2 redundant rootfs partitions

To create boot entries for these, use the efibootmgr tool:

efibootmgr --create --disk /dev/sdaX --part 1 --label "system0" --loader \\EFI\\LINUX\\BZIMAGE.EFI --unicode "root=PARTUUID=<partuuid-of-part-1>"
efibootmgr --create --disk /dev/sdaX --part 2 --label "system1" --loader \\EFI\\LINUX\\BZIMAGE.EFI --unicode "root=PARTUUID=<partuuid-of-part-2>"

where you replace /dev/sdaX with the name of the disk you use for redundancy
boot, <partuuid-of-part-1> with the PARTUUID of the first rootfs
partition and <partuuid-of-part-2> with the PARTUUID of the second rootfs
partition.

You can inspect and verify your settings by running:

efibootmgr -v

In your system.conf, you have to list both the EFI partitions (each containing
one kernel) as well as the rootfs partitions.
Make the first EFI partition a child of the first rootfs partition and the
second EFI partition a child of the second rootfs partition to have valid slot
groups.
Set the rootfs slot bootnames to those we have defined with the --label
argument in the efibootmgr call above:

[slot.efi.0]
device=/dev/sdX1
type=vfat
parent=rootfs.0

[slot.efi.1]
device=/dev/sdX2
type=vfat
parent=rootfs.1

[slot.rootfs.0]
device=/dev/sdX3
type=ext4
bootname=system0

[slot.rootfs.1]
device=/dev/sdX4
type=ext4
bootname=system1

6.6.6. Custom

If none of the previously mentioned approaches can be applied on the system,
RAUC also offers the possibility to use customization scripts or applications
as bootloader backend.

To enable the custom bootloader backend support in RAUC, select it in your
system.conf:

[system]
...
bootloader=custom

6.6.6.1. Configure custom bootloader backend

The custom bootloader backed based on a handler that is called to get the
desired information or set the appropriate configuration of the custom
bootloader environment.

To register the custom bootloader backend handler, assign your handler to the
bootloader-custom-backend key in section handlers in your system.conf:

[handlers]
...
bootloader-custom-backend=custom-bootloader-script

6.6.6.2. Custom bootloader backend interface

According to Boot Slot Selection the custom bootloader handler is called by
RAUC to trigger the following actions:

	get the primary slot

	set the primary slot

	get the boot state

	set the boot state

To get the primary slot, the handler is called with the argument get-primary.
The handler must output the current primary slot’s bootname on the stdout,
and return 0 on exit, if no error occurred.
In case of failure, the handler must return with non-zero value.
Accordingly, in order to set the primary slot,
the custom bootloader handler is called with argument set-primary <slot.bootname>
where <slot.bootname> matches the bootname= key defined for the
respective slot in your system.conf.
If the set was successful, the handler must also return with a 0,
otherwise the return value must be non-zero.

In addition to the primary slot,
RAUC must also be able to determine the boot state of a specific slot.
RAUC determines the necessary boot state by calling the custom bootloader
handler with the argument get-state <slot.bootname>.
Whereupon the handler has to output the state good or bad to stdout
and exit with the return value 0.
If the state cannot be determined or another error occurs,
the custom bootloader handler must exit with non-zero return value.
To set the boot state to the desire slot,
the handler is called with argument set-state <slot.bootname> <state>.
As already mentioned in the paragraph above,
the <slot.bootname> matches the bootname= key defined for the
respective slot in your system.conf.
The <state> argument corresponds to one of the following values:

	good if the last start of the slot was successful or

	bad if the last start of the slot failed.

The return value must be 0 if the boot state was set successfully,
or non-zero if an error occurred.

6.7. Init System and Service Startup

There are several ways to run the RAUC service on your target.
The recommended way is to use a systemd-based system and allow to start RAUC
via D-Bus activation.

You can start the RAUC service manually by executing:

$ rauc service

Keep in mind that rauc service reads the system.conf during startup and needs to be
restarted for changes in the system.conf to take affect.

6.7.1. Systemd Integration

When building RAUC, a default systemd rauc.service file will be generated
in the data/ folder.

Depending on your configuration make install will place this file in one of
your system’s service file folders.

It is a good idea to wait for the system to be fully started before marking it
as successfully booted.
In order to achieve this, a smart solution is to create a systemd service that calls
rauc status mark-good and use systemd’s dependency handling to assure this
service will not be executed before all relevant other services came up
successfully. It could look similar to this:

[Unit]
Description=RAUC Good-marking Service
ConditionKernelCommandLine=|bootchooser.active
ConditionKernelCommandLine=|rauc.slot

[Service]
ExecStart=/usr/bin/rauc status mark-good

[Install]
WantedBy=multi-user.target

6.8. D-Bus Integration

The D-Bus interface RAUC provides makes it easy to
integrate it into your customapplication.
In order to allow sending data, make sure the D-Bus config file
de.pengutronix.rauc.conf from the data/ dir gets installed properly.

To only start RAUC when required, using D-Bus activation is a smart solution.
In order to enable D-Bus activation, properly install the D-Bus service file
de.pengutronix.rauc.service from the data/ dir.

6.9. Watchdog Configuration

Detecting system hangs during runtime requires to have a watchdog and to have
the watchdog configured and handled properly.
Systemd provides a sophisticated watchdog multiplexing and handling allowing
you to configure separate timeouts and handlings for each of your services.

To enable it, you need at least to have these lines in your systemd
configuration:

RuntimeWatchdogSec=20
ShutdownWatchdogSec=10min

6.10. Yocto

Yocto support for using RAUC is provided by the meta-rauc [https://github.com/rauc/meta-rauc] layer.

The layer supports building RAUC both for the target as well as as a host tool.
With the bundle.bbclass [https://github.com/rauc/meta-rauc/blob/master/classes/bundle.bbclass] it
provides a mechanism to specify and build bundles directly with the help of
Yocto.

For more information on how to use the layer, also see the layer’s README [https://github.com/rauc/meta-rauc/blob/master/README.rst] file.

6.10.1. Target System Setup

Add the meta-rauc layer to your setup:

git submodule add git@github.com:rauc/meta-rauc.git

Add the RAUC tool to your image recipe (or package group):

IMAGE_INSTALL_append = "rauc"

Append the RAUC recipe from your BSP layer (referred to as meta-your-bsp in the
following) by creating a meta-your-bsp/recipes-core/rauc/rauc_%.bbappend
with the following content:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

Write a system.conf for your board and place it in the folder you mentioned
in the recipe (meta-your-bsp/recipes-core/rauc/files). This file must provide
a system compatible string to identify your system type, as well as a
definition of all slots in your system. By default, the system configuration
will be placed in /etc/rauc/system.conf on your target rootfs.

Also place the appropriate keyring file for your target into the directory
added to FILESEXTRAPATHS above. Name it either ca.cert.pem or
additionally specify the name of your custom file by setting
RAUC_KEYRING_FILE. If multiple keyring certificates are required on a
single system, create a keyring directory containing each certificate.

Note

For information on how to create a testing / development
key/cert/keyring, please refer to scripts/README [https://github.com/rauc/meta-rauc/blob/master/scripts/README] in meta-rauc.

For a reference of allowed configuration options in system.conf,
see System Configuration File.
For a more detailed instruction on how to write a system.conf,
see RAUC System Configuration.

6.10.2. Using RAUC on the Host System

The RAUC recipe allows to compile and use RAUC on your host system.
Having RAUC available as a host tool is useful for debugging, testing or for
creating bundles manually.
For the preferred way of creating bundles automatically, see the chapter
Bundle Generation. In order to compile RAUC for your host system, simply run:

bitbake rauc-native

This will place a copy of the RAUC binary in tmp/deploy/tools in your
current build folder. To test it, try:

tmp/deploy/tools/rauc --version

6.10.3. Bundle Generation

Bundles can be created either manually by building and using RAUC as a native
tool, or by using the bundle.bbclass that handles most of the basic steps,
automatically.

First, create a bundle recipe in your BSP layer. A possible location for this
could be meta-your-bsp/recipes-core/bundles/update-bundle.bb.

To create your bundle you first have to inherit the bundle class:

inherit bundle

To create the manifest file, you may either use the built-in class mechanism,
or provide a custom manifest.

For using the built-in bundle generation, you need to specify some variables:

	RAUC_BUNDLE_COMPATIBLE

	Sets the compatible string for the bundle. This should match the compatible
you specified in your system.conf or, more generally, the compatible of the
target platform you intend to install this bundle on.

	RAUC_BUNDLE_SLOTS

	Use this to list all slot classes for which the bundle should contain images.
A value of "rootfs appfs" for example will create a manifest with images
for two slot classes; rootfs and appfs.

	RAUC_BUNDLE_FORMAT

	Use this to choose the Bundle Formats for the generated bundle.
It currently defaults to plain, but you should use verity if possible.

	RAUC_SLOT_<slotclass>

	For each slot class, set this to the image (recipe) name which builds the
artifact you intend to place in the slot class.

	RAUC_SLOT_<slotclass>[type]

	For each slot class, set this to the type of image you intend to place in
this slot. Possible types are: image (default), kernel,
boot, or file.

Note

For a full list of supported variables, refer to classes/bundle.bbclass in
meta-rauc.

A minimal bundle recipe, such as core-bundle-minimal.bb that is contained in
meta-rauc will look as follows:

inherit bundle

RAUC_BUNDLE_COMPATIBLE ?= "Demo Board"

RAUC_BUNDLE_SLOTS ?= "rootfs"

RAUC_BUNDLE_FORMAT ?= "verity"

RAUC_SLOT_rootfs ?= "core-image-minimal"

To be able to build a signed image of this, you also need to configure
RAUC_KEY_FILE and RAUC_CERT_FILE to point to your key and certificate
files you intend to use for signing. You may set them either from your bundle
recipe or any global configuration (layer, site.conf, etc.), e.g.:

RAUC_KEY_FILE = "${COREBASE}/meta-<layername>/files/development-1.key.pem"
RAUC_CERT_FILE = "${COREBASE}/meta-<layername>/files/development-1.cert.pem"

Note

For information on how to create a testing / development
key/cert/keyring, please refer to scripts/README in meta-rauc.

Based on this information, a call of:

bitbake core-bundle-minimal

will build all required images and generate a signed RAUC bundle from this.
The created bundle can be found in
${DEPLOY_DIR_IMAGE}
(defaults to tmp/deploy/images/<machine> in your build directory).

6.11. PTXdist

Note

RAUC support in PTXdist is available since version 2017.04.0.

6.11.1. Integration into Your RootFS Build

To enable building RAUC for your target, set:

CONFIG_RAUC=y

in your ptxconfig (by selecting RAUC via ptxdist menuconfig).

You should also customize the compatible RAUC uses for your system.
To do this, set PTXCONF_RAUC_COMPATIBLE to a string that uniquely
identifies your device type.
The default value will be "${PTXCONF_PROJECT_VENDOR}\ ${PTXCONF_PROJECT}".

Place your system configuration file in
$(PTXDIST_PLATFORMCONFIGDIR)/projectroot/etc/rauc/system.conf to let the
RAUC package install it into the rootfs you build.

Note

PTXdist versions since 2020.06.0 use their code signing infrastructure [https://www.ptxdist.org/doc/dev_code_signing.html] for keyring creation.
See PTXdist’s Managing Certificate Authority Keyrings [https://www.ptxdist.org/doc/dev_code_signing.html#managing-certificate-authority-keyrings] for different scenarios (refer to RAUC’s
CA Configuration).
Previous PTXdist versions expected the keyring in
$(PTXDIST_PLATFORMCONFIGDIR)/projectroot/etc/rauc/ca.cert.pem.
The keyring is installed into the rootfs to /etc/rauc/ca.cert.pem.

If using systemd, the recipes install both the default systemd.service file
for RAUC as well as a rauc-mark-good.service file.
This additional good-marking-service runs after user space is brought up and
notifies the underlying bootloader implementation about a successful boot of
the system.
This is typically used in conjunction with a boot attempts counter in the
bootloader that is decremented before starting the system and reset by
rauc status mark-good to indicate a successful system startup.

6.11.2. Create Update Bundles from your RootFS

To enable building RAUC bundles, set:

CONFIG_IMAGE_RAUC=y

in your platformconfig (by using ptxdist platformconfig).

This adds a default image recipe for building a RAUC update bundle out of the
system’s rootfs.
As for most image recipes, the genimage <genimage_> tool is used to configure
and generate the update bundle.

PTXdist’s default bundle configuration is placed in
config/images/rauc.config.
You may also copy this to your platform directory to use this as a base for
custom bundle configuration.

RAUC enforces signing of update bundles.
PTXdist versions since 2020.06.0 use its code signing infrastructure [https://www.ptxdist.org/doc/dev_code_signing.html] for signing and keyring verification.
Previous versions expected the signing key in
$(PTXDIST_PLATFORMCONFIGDIR)/config/rauc/rauc.key.pem.

Once you are done with your setup, PTXdist will automatically create a RAUC
update bundle for you during the run of ptxdist images.
It will be placed under $(PTXDIST_PLATFORMDIR)/images/update.raucb.

6.12. Buildroot

Note

RAUC support in Buildroot is available since version 2017.08.0.

To build RAUC using Buildroot, enable BR2_PACKAGE_RAUC in your
configuration.

6.13. Bundle Format Migration

Migrating from the plain to the verity bundle format should be simple in most cases and can be done in a single
update.
The high-level functionality of RAUC (certificate checking, update installation,
hooks/handlers, …) is independent of the low-level bundle format.

The required steps are:

	Configure your build system to build RAUC v1.5 (or newer).

	Enable CONFIG_CRYPTO_SHA256, CONFIG_MD, CONFIG_BLK_DEV_DM and
CONFIG_DM_VERITY in your kernel configuration.
These may already be enabled if you are using dm-verity for verified boot.

	Add a new bundle output configured for the verity format by adding the
following to the manifest:

[bundle]
format=verity

Note

For OE/Yocto with an up-to-date meta-rauc, you can choose the bundle format
by adding the RAUC_BUNDLE_FORMAT = "verity" option in your bundle
recipe.
The bundle.bbclass will insert the necessary option into the manifest.

For PTXdist or Buildroot with genimage, you can add the manifest option
above to the template in your genimage config file.

With these changes, the build system should produce two bundles (one in either
format).
A verity bundle will only be installable on systems that have already
received the migration update.
A plain bundle will be installable on both migrated and unmigrated systems.

You should then test that both bundle formats can be installed on a migrated
system, as RAUC will now perform additional checks when installing a plain
bundle to protect against potential modification during installation.
This testing should include all bundle sources (USB, network, …) that you will
need in the field to ensure that these new checks don’t trigger in your case
(which would prohibit further updates).

Note

When installing bundles from a FAT filesystem (for example on a USB memory
stick), check that the mount option fmask is set to 0022 or 0133.

When you no longer need to be able to install previously built bundles in the
plain format, you should also disable it in the system.conf:

[system]
…
bundle-formats=-plain
…

If you later need to support downgrades, you can use rauc extract and rauc
bundle to convert a plain bundle to a verity bundle, allowing installation
to systems that have already been migrated.

7. Advanced Topics

7.1. Security

The RAUC bundle format consists of the images and a manifest, contained in a
SquashFS image.
The SquashFS is followed by a public key signature over the full image.
The signature is stored (together with the signer’s certificate) in the CMS
(Cryptographic Message Syntax, see RFC5652 [https://tools.ietf.org/html/rfc5652]) format.
Before installation, the signer certificate is verified against the keyring(s)
already stored on the system and the signers public key is then used to verify
the bundle signature.

[image: _images/rauc-bundle.svg]

We selected the CMS to avoid designing and implementing our own custom security
mechanism (which often results in vulnerabilities).
CMS is well proven in S/MIME and has widely available implementations, while
supporting simple as well as complex PKI use-cases (certificate expiry,
intermediate CAs, revocation, algorithm selection, hardware security modules…)
without additional complexity in RAUC itself.

RAUC uses OpenSSL [https://www.openssl.org/] as a library for signing and verification of bundles.
A PKI with intermediate CAs for the unit tests is generated by the
test/openssl-ca-create.sh shell script available from GitHub [https://github.com/rauc/rauc/blob/master/test/openssl-ca-create.sh], which
may also be useful as an example for creating your own PKI.

In the following sections, general CA configuration, some use-cases and
corresponding PKI setups are described.

7.1.1. CA Configuration

OpenSSL uses an openssl.cnf file to define paths to use for signing, default
parameters for certificates and additional parameters to be stored during
signing.
Configuring a CA correctly (and securely) is a complex topic and obviously
exceeds the scope of this documentation.
As a starting point, the OpenSSL manual pages (especially ca [https://www.openssl.org/docs/man1.1.1/man1/ca.html], req [https://www.openssl.org/docs/man1.1.1/man1/req.html], x509 [https://www.openssl.org/docs/man1.1.1/man1/x509.html], cms [https://www.openssl.org/docs/man1.1.1/man1/cms.html],
verify [https://www.openssl.org/docs/man1.1.1/man1/verify.html] and config [https://www.openssl.org/docs/man1.1.1/man5/config.html]) and Stefan H. Holek’s pki-tutorial [https://pki-tutorial.readthedocs.io/] are useful.

7.1.1.1. Certificate Key Usage Attributes

By default (for backwards compatibility reasons), RAUC does not check the
certificate’s key usage attributes.
When not using a stand-alone PKI for RAUC, it can be useful to enable checking
via the check-purpose configuration option to allow only specific
certificates for bundle installation.

When using OpenSSL to create your certificates, the key usage attributes can be
configured in the X.509 V3 extension sections [https://www.openssl.org/docs/man1.1.1/man5/x509v3_config.html] in your
OpenSSL configuration file.
The extension configuration section to be used by openssl ca is selected
via the -extensions argument.
For example, RAUC uses a certificate created with the following extensions to
test the handling of the codeSigning extended key usage attribute:

[v3_leaf_codesign]
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer:always
basicConstraints = CA:FALSE
extendedKeyUsage=critical,codeSigning

As OpenSSL does not (yet) provide a purpose check for code signing, RAUC
contains its own implementation, which can be enabled with the
check-purpose=codesign configuration option.
For the leaf (signer) certificate, the extendedKeyUsage attribute must exist
and contain (at least) the codeSigning value.
Also, if it has the keyUsage attribute, it must contain at least digitalSignature.
For all other (issuer) certificates in the chain, the extendedKeyUsage
attribute is optional, but if it is present, it must contain at least the
codeSigning value.

This means that only signatures using certificates explicitly issued for code
signing are accepted for the codesign purpose.
Also, you can optionally use extendedKeyUsage attributes on intermediate CA
certificates to limit which ones are allowed to issue code signing
certificates.

7.1.2. Single Key

You can use openssl req -x509 -newkey rsa:4096 -keyout key.pem -out
cert.pem -days 365 -nodes to create a key and a self-signed certificate.
While you can use RAUC with these, you can’t:

	replace expired certificates without updating the keyring

	distinguish between development versions and releases

	revoke a compromised key

7.1.3. Simple CA

By using the (self-signed) root CA only for signing other keys, which are used
for bundle signing, you can:

	create one key per developer, with limited validity periods

	revoke keys and ship the CRL (Certificate Revocation List) with an update

With this setup, you can reduce the impact of a compromised developer key.

7.1.4. Separate Development and Release CAs

By creating a complete separate CA and bundle signing keys, you can give only
specific persons (or roles) the keys necessary to sign final releases.
Each device only has one of the two CAs in its keyring, allowing only
installation of the corresponding updates.

While using signing also during development may seem unnecessary, the additional
testing of the whole update system (RAUC, bootloader, migration code, …) allows
finding problems much earlier.

7.1.5. Intermediate Certificates

RAUC allows you to include intermediate certificates in the bundle signature
that can be used to close the trust chain during bundle signature verification.

To do this, specify the --intermediate argument during bundle creation:

rauc bundle --intermediate=/path/to/intermediate.ca.pem [...]

Note that you can specify the --intermediate argument multiple times to
include multiple intermediate certificates to your bundle signature.

7.1.6. Resigning Bundles

RAUC allows to replace the signature of a bundle.
A typical use case for this is if a bundle that was generated by an autobuilder
and signed with a development certificate was tested successfully on your target
and should now become a release bundle.
For this it needs to be resigned with the release key without modifying
the content of the bundle itself.

This is what the resign command of RAUC is for:

rauc resign --cert=<certfile> --key=<keyfile> --keyring=<keyring> <input-bundle> <output-bundle>

It verifies the bundle against the given keyring, strips the old signature and
attaches a new one based on the key and cert files provided.
If the old signature is no longer valid, you can use the --no-verify
argument to disable verification.

7.1.6.1. Switching the Keyring – SPKI hashes

When switching from a development to a release signature, it is typically
required to also equip the rootfs with a different keyring file.

While the development system should accept both development and release
certificates, the release system should accept only release certificates.

One option to perform this exchange without having to build a new rootfs would
be to include both a keyring for the development case as well as a keyring for
the release case.

Doing this would be possible in a slot’s post-install hook, for example.
Depending on whether the bundle to install was signed with a development or a
release certificate, either the production or development keyring will be copied
to the location where RAUC expects it to be.

To allow comparing hashes, RAUC generates SPKI hashes (i.e. hashes over the
entire public key information of a certificate) out of each signature
contained in the bundle’s trust chain.
The SPKI hashes are invariant over changes in signature meta data (such as the
validity dates) while allowing to securely compare the certificate ownership.

A simple call of rauc info will list the SPKI hashes for each certificate
contained in the validated trust chain:

Certificate Chain:
 0 Subject: /O=Test Org/CN=Test Org Release-1
 Issuer: /O=Test Org/CN=Test Org Provisioning CA Release
 SPKI sha256: 94:67:AB:31:08:04:3D:2D:62:D5:EE:58:D6:2F:86:7A:F2:77:94:29:9B:46:11:00:EC:D4:7B:1B:1D:42:8E:5A
 1 Subject: /O=Test Org/CN=Test Org Provisioning CA Release
 Issuer: /O=Test Org/CN=Test Org Provisioning CA Root
 SPKI sha256: 47:D4:9D:73:9B:11:FB:FD:AB:79:2A:07:36:B7:EF:89:3F:34:5F:D4:9B:F3:55:0F:C1:04:E7:CC:2F:32:DB:11
 2 Subject: /O=Test Org/CN=Test Org Provisioning CA Root
 Issuer: /O=Test Org/CN=Test Org Provisioning CA Root
 SPKI sha256: 00:34:F8:FE:5A:DC:3B:0D:FE:64:24:07:27:5D:14:4D:E2:39:8C:68:CC:9A:86:DD:67:03:D7:15:11:16:B4:4E

A post-install hook instead can access the SPKI hashes via the environment
variable RAUC_BUNDLE_SPKI_HASHES that will be set by RAUC when invoking the
hook script.
This variable will contain a space-separated list of the hashes in the same order
they are listed in rauc info.
This list can be used to define a condition in the hook for either installing
one or the other keyring file on the target.

Example hook shell script code for above trust chain:

case "$1" in

 [...]

 slot-post-install)

 [...]

 # iterate over trust chain SPKI hashes (from leaf to root)
 for i in $RAUC_BUNDLE_SPKI_HASHES; do
 # Test for development intermediate certificate
 if ["$i" == "46:9E:16:E2:DC:1E:09:F8:5B:7F:71:D5:DF:D0:A4:91:7F:FE:AD:24:7B:47:E4:37:BF:76:21:3A:38:49:89:5B"]; then
 echo "Activating development key chain"
 mv "$RAUC_SLOT_MOUNT_POINT/etc/rauc/devel-keyring.pem" "$RAUC_SLOT_MOUNT_POINT/etc/rauc/keyring.pem"
 break
 fi
 # Test for release intermediate certificate
 if ["$i" == "47:D4:9D:73:9B:11:FB:FD:AB:79:2A:07:36:B7:EF:89:3F:34:5F:D4:9B:F3:55:0F:C1:04:E7:CC:2F:32:DB:11"]; then
 echo "Activating release key chain"
 mv "$RAUC_SLOT_MOUNT_POINT/etc/rauc/release-keyring.pem" "$RAUC_SLOT_MOUNT_POINT/etc/rauc/keyring.pem"
 break
 fi
 done
 ;;

 [...]
esac

7.1.7. PKCS#11 Support

RAUC can use certificates and keys which are stored in a PKCS#11-supporting
smart-card, USB token (such as a YubiKey [https://www.yubico.com]) or
Hardware Security Module (HSM).
For all commands which need create a signature bundle, convert and
resign, PKCS#11 URLs [https://tools.ietf.org/html/rfc7512] can be used
instead of filenames for the --cert and --key arguments.

For example, a bundle can be signed with a certificate and key available as
pkcs11:token=rauc;object=autobuilder-1:

rauc bundle \
 --cert='pkcs11:token=rauc;object=autobuilder-1' \
 --key='pkcs11:token=rauc;object=autobuilder-1' \
 <input-dir> <output-file>

Note

Most PKCS#11 implementations require a PIN for signing operations.
You can either enter the PIN interactively as requested by RAUC or use the
RAUC_PKCS11_PIN environment variable to specify the PIN to use.

When working with PKCS#11, some tools are useful to configure and show your tokens:

	p11-kit [https://github.com/p11-glue/p11-kit]

	p11-kit is an abstraction layer which provides access to multiple PKCS#11 modules.

It contains p11tool, which is useful to see available tokens and objects
(keys and certificates) and their URLs:

$ p11tool --list-tokens
…
Token 5:
 URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;serial=9f03d1aaed92ef58;token=rauc
 Label: rauc
 Type: Generic token
 Manufacturer: SoftHSM project
 Model: SoftHSM v2
 Serial: 9f03d1aaed92ef58
 Module: /usr/lib/softhsm/libsofthsm2.so
$ p11tool --login --list-all pkcs11:token=rauc
Token 'rauc' with URL 'pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;serial=9f03d1aaed92ef58;token=rauc' requires user PIN
Enter PIN: ****
Object 0:
 URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;serial=9f03d1aaed92ef58;token=rauc;id=%01;object=autobuilder-1;type=public
 Type: Public key
 Label: autobuilder-1
 Flags: CKA_WRAP/UNWRAP;
 ID: 01

Object 1:
 URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;serial=9f03d1aaed92ef58;token=rauc;id=%01;object=autobuilder-1;type=private
 Type: Private key
 Label: autobuilder-1
 Flags: CKA_WRAP/UNWRAP; CKA_PRIVATE; CKA_SENSITIVE;
 ID: 01

Object 2:
 URL: pkcs11:model=SoftHSM%20v2;manufacturer=SoftHSM%20project;serial=9f03d1aaed92ef58;token=rauc;id=%01;object=autobuilder-1;type=cert
 Type: X.509 Certificate
 Label: autobuilder-1
 ID: 01

	OpenSC [https://github.com/OpenSC/OpenSC]

	OpenSC is the standard open source framework for smart card access.

It provides pkcs11-tool, which is useful to prepare a token for usage
with RAUC.
It can list, read/write objects, generate key pairs and more.

	libp11 [https://github.com/OpenSC/libp11]

	libp11 is an engine plugin for OpenSSL, which allows using keys on PKCS#11
tokens with OpenSSL.

It will automatically use p11-kit (if available) to access all configured
PKCS#11 modules.

Note

If you cannot use p11-kit, you can also use the RAUC_PKCS11_MODULE
environment variable to select the PKCS#11 module.

	SoftHSM2 [https://github.com/opendnssec/SoftHSMv2]

	SoftHSM2 is software implementation of a HSM with a PKCS#11 interface.

It is used in the RAUC test suite to emulate a real HSM and can also be used
to try the PKCS#11 functionality in RAUC without any hardware.
The prepare_softhsm2 shell function in test/rauc.t can be used as an
example on how to initialize SoftHSM2 token.

	aws-kms-pkcs11 [https://github.com/JackOfMostTrades/aws-kms-pkcs11]

	aws-kms-pkcs11 is a PKCS#11 which uses the AWS KMS as its backend.

This allows using keys managed in AWS KMS for signing RAUC bundles:
RAUC_PKCS11_MODULE=/usr/lib/x86_64-linux-gnu/pkcs11/aws_kms_pkcs11.so rauc
bundle --cert=<certificate pem> --key='pkcs11:' <input-dir> <output-bundle>

7.1.8. Protection Against Concurrent Bundle Modification

As the plain bundle format consists of a squashfs
image with an appended CMS signature, RAUC must check the signature before
accessing the squashfs.
If an unprivileged process can manipulate the squashfs part of the bundle after
the signature has been checked, it could use this to elevate its privileges.

The verity format is not affected by this problem, as the kernel checks the
squashfs data as it is read.

To mitigate this problem when using the plain format, RAUC will check the
bundle file for possible issues before accessing the squashfs:

	ownership or permissions that would allow other users to open it for writing

	storage on unsafe filesystems such as FUSE or NFS, where the data is supplied
by an untrusted source (the rootfs is explicitly trusted, though)

	storage on a filesystem mounted from a block device with a non-root owner

	existing open file descriptors (via F_SETLEASE)

If the check fails, RAUC will attempt to take ownership of the bundle file and
removes write permissions.
This protects against processes trying to open writable file descriptors from
this point on.
Then, the checks above a repeated before setting up the loopback device and
mounting the squashfs.
If this second check fails, RAUC will abort the installation.

If RAUC had to take ownership of the bundle, this change is not reverted after
the installation is completed.
Note that, if the original user has write access to the containing directory,
they can still delete the file.

7.2. HTTP Streaming

RAUC supports installing bundles directly from a HTTP(S) server, without having
to download and store the bundle locally.
Streaming works with the sub-commands install, info and mount as
well as with the DBus API.

To use streaming, some prerequisites need to be fulfilled:

	configure RAUC with --enable-streaming

	create bundles using the verity format

	host the bundle on a server which supports HTTP Range Requests

	enable NBD (network block device) support in the kernel

Some options can be configured in the [streaming] section in RAUC’s system.conf.

RAUC’s streaming support works by creating a NBD device (instead of the
loopback device used for local bundles) and an unprivileged helper process to
convert the NBD read requests to HTTP Range Requests.
By using the curl library [https://curl.se/libcurl/], streaming
supports:

	HTTP versions 1.1 and 2

	Basic Authentication (user:password@…)

	HTTPS (optionally with client certificates, either file- or PKCS#11-based)

	custom HTTP headers (i.e. for bearer tokens)

When using TLS client certificates, you need to ensure that the key (or PKCS#11
token) is accessible to the streaming sandbox user.

You can configure a proxy by setting the http_proxy/https_proxy (lower
case only [https://everything.curl.dev/usingcurl/proxies#http_proxy-in-lower-case-only])
environment variables, which are handled by curl directly [https://everything.curl.dev/usingcurl/proxies#proxy-environment-variables].

7.2.1. Authentication

To use Basic Authentication, you can add the username and password to the bundle
URL (rauc install https//user:password@example.com/update.raucb).

To pass HTTP headers for authentication, use the --http-header='HEADER:
VALUE' option of rauc install or set them via the http-headers options
of the D-Bus InstallBundle
method.
This could be used for session cookies, bearer tokens or any custom headers.

For HTTPS client certificates, use the --tls-cert/key=PEMFILE|PKCS11-URL
options of rauc install or the tls-cert/key options of the D-Bus
InstallBundle method.

If you need to temporarily disable verification of the server certificate, you
can use --tls-no-verify.

7.2.2. Performance

As a rough guide, with a relatively fast network, streaming installation is
about as fast as downloading and then installing.
For example, when installing a 190MiB bundle on a STM32MP1 SoC (dual ARM
Cortex-A7) with an eMMC, streaming took 1m43s, while downloading followed by
local installation took 1m42s (13s+1m29s).

As each chunk of compressed data is only requested incrementally when needed by
the installation processes, you should expect that network connections with
higher round-trip-time (RTT) lead to longer installation times.
This can be compensated somewhat by using a HTTP/2 server, as this supports
multiplexing and better connection reuse.

7.3. Data Storage and Migration

Most systems require a location for storing configuration data such as
passwords, ssh keys or application data.
When performing an update, you have to ensure that the updated system takes
over or can access the data of the old system.

7.3.1. Storing Data in The Root File System

In case of a writable root file system, it often contains additional data,
for example cryptographic material specific to the machine, or configuration
files modified by the user.
When performing the update, you have to ensure that the files you need to
preserve are copied to the target slot after having written
the system data to it.

RAUC provides support for executing hooks from different slot installation
stages.
For migrating data from your old rootfs to your updated rootfs,
simply specify a slot post-install hook.
Read the Hooks chapter on how to create one.

7.3.2. Using Data Partitions

Often, there are a couple of reasons why you don’t want to or cannot store
your data inside the root file system:

	You want to keep your rootfs read-only to reduce probability of corrupting it.

	You have a non-writable rootfs such as SquashFS.

	You want to keep your data separated from the rootfs to ease setup, reset or
recovery.

In this case you need a separate storage location for your data on a different
partition, volume or device.

If the update concept uses full redundant root file systems,
there are also good reasons for using a redundant data storage, too.
Read below about the possible impact on data migration.

To let your system access the separate storage location, it has to be mounted
into your rootfs.
Note that if you intend to store configurable system information on your data
partition, you have to map the default Linux paths (such as /etc/passwd) to
your data storage. You can do this by using:

	symbolic links

	bind mounts

	an overlay file system

It depends on the amount and type of data you want to handle which option you
should choose.

7.3.3. Application Data Migration

[image: _images/data_migration.svg]

Both a single and a redundant data storage have their advantages and
disadvantages.
Note when storing data inside your rootfs you will have a redundant setup by
design and cannot choose.

The decision about how to set up a configuration storage and how to handle it
depends on several aspects:

	May configuration formats change over different application versions?

	Can a new application read (and convert) old data?

	Does your infrastructure allow working on possibly obsolete data?

	Enough storage to store data redundantly?

	…

The basic advantages and disadvantages a single or a redundant setup implicate
are listed below:

	
	Single Data

	Redundant Data

	Setup

	easy

	assure using correct one

	Migration

	no backup by default

	copy on update, migrate

	Fallback

	tricky (reconvert data?)

	easy (old data!)

7.3.3.1. Managing a /dev/data Symbolic Link

For redundant data partitions the active rootfs slot has to mount the correct
data partition dynamically.
For example with ubifs, a udev rule set can be used for this:

KERNEL=="ubi[0-9]_[0-9]", PROGRAM="/usr/bin/is-parent-active %k", RESULT=="1", SYMLINK+="data"

This example first determines if ubiX_Y is a data slot with an active parent
rootfs slot by calling the script below.
Then, the current ubiX_Y partition is bound to /dev/data if the script
returned 1 as its output.

/usr/bin/is-parent-active is a simple bash script:

#!/bin/bash

ROOTFS_DEV=<determine rootfs by using proc cmdline or mount>
TEST_DEV=<obtain parent rootfs device for currently processed device (%k)>

if [[$ROOTFS_DEV == $TEST_DEV]]; then
 echo 1
else
 echo 0
fi

With this you can always mount /dev/data and get the correct data slot.

7.4. RAUC casync Support

Warning

casync support is still experimental and lacks some unit tests.

When evaluating, make sure to compile a recent casync version from the
git [https://github.com/systemd/casync] for testing.

Using the Content-Addressable Data Synchronization tool casync for updating
embedded / IoT devices provides a couple of benefits.
By splitting and chunking the update artifacts into reusable pieces, casync
allows to

	stream remote bundles to the target without occupying storage / NAND

	minimize transferred data for an update by downloading only the delta to the
running system

	reduce data storage on server side by eliminating redundancy

	good handling for CDNs due to similar chunk sizes

For a full description of the way casync works and what you can do with it,
refer to the
blog post [http://0pointer.net/blog/casync-a-tool-for-distributing-file-system-images.html]
by its author Lennart Poettering or visit the
GitHub site [https://github.com/systemd/casync].

RAUC supports using casync index files instead of complete images in its bundles.
This way the real size of the bundle comes down to the size of the index files
required for referring to the individual chunks.
The real image data contained in the individual chunks can be stored in one
single repository, for a whole systems with multiple images as well as for
multiple systems in different versions, etc.
This makes the approach quite flexible.

[image: _images/casync-basics.svg]

7.4.1. Creating casync Bundles

Creating RAUC bundles with casync index files is a bit different from creating
‘conventional’ bundles.
While the bundle format remains the same and you could also mix conventional
and casync-based bundles, creating these bundles is not straight forward when
using common embedded build systems such as Yocto, PTXdist or buildroot.

Because of this, we decided use a two-step process for creating casync RAUC
bundles:

	Create ‘conventional’ RAUC bundle

	Convert to casync-based RAUC bundle

RAUC provides a command for creating casync-based bundles from ‘conventional’
bundles.
Simply call:

rauc convert --cert=<certfile> --key=<keyfile> --keyring=<keyring> conventional-bundle.raucb casync-bundle.raucb

The conversion process will create two new artifacts:

	The converted bundle casync-bundle.raucb with casnyc index files instead
of image files

	A casync chunk store casync-bundle.castr/ for all bundle images.
This is a directory with chunks grouped by subfolders of the first 4 digits
of their chunk ID.

7.4.2. Installing casync Bundles

The main difference between installing conventional bundles and bundles that
contain casync index files is that RAUC requires access to the remote casync
chunk store during installation of the bundle.

Due to the built-in network support of both casync and RAUC, it is possible to
directly give a network URL as the source of the bundle:

rauc install https://server.example.com/deploy/bundle-20180112.raucb

By default, RAUC will assume the corresponding casync chunk store is located at
the same location as the bundle (with the .castr extension instead of
.raucb), in this example at
https://server.example.com/deploy/bundle-20180112.castr.
The default location can also be configured in the system config to point to a
generic location that is valid for all installations.

When installing a bundle, the casync implementation will automatically handle
the chunk download via an unprivileged helper binary.

[image: _images/casync-extract.svg]

7.4.2.1. Reducing Download Size – Seeding

Reducing the amount of data to be transferred over slow connections is one of
the main goals of using casync for updating.
Casync splits up the images or directory trees it handles into reusable chunks
of similar size.
Doing this both on the source as well as on the destination side allows
comparing the hashes of the resulting chunks to know which parts are different.

When we update a system, we usually do not change its entire file tree, but
only update a few libraries, the kernel, the application, etc.
Thus, most of the data can be retrieved from the currently active system and
does not need to be fetched via the network.

For each casync image that RAUC extracts to the target slot, it determines an
appropriate seed.
This is normally a redundant slot of the same class as the target slot but from
the currently booted slot group.

[image: _images/casync-rauc.svg]

Note

Depending on your targets processing and storage speed, updating slots with
casync can be a bit slower than conventional updates,
because casync first has to process the entire seed slot to calculate the
seed chunks.
After this is done it will start writing the data and fetch missing chunks
via the network.

7.5. Handling Board Variants With a Single Bundle

If you have hardware variants that require installing different images
(e.g. for the kernel or for an FPGA bitstream), but have other slots
that are common (such as the rootfs) between all hardware variants,
RAUC allows you to put multiple different variants of these images in the
same bundle.
RAUC calls this feature ‘image variants’.

[image: _images/rauc-image-variants.svg]If you want to make use of image variants, you first of all need to say which
variant your specific board is. You can do this in your system.conf by
setting exactly one of the keys variant-dtb, variant-file or
variant-name.

[system]
...
variant-dtb=true

The variant-dtb is a Boolean that allows (on device-tree based boards)
to use the systems compatible string as the board variant.

[system]
...
variant-file=/path/to/file

A more generic alternative is the variant-file key.
It allows to specify a file that will be read to obtain the variant name.
Note that the content of the file should be a simple string without any line
breaks.
A typical use case would be to generate this file (in /run) during system
startup from a value you obtained from your bootloader.
Another use case is to have a RAUC post-install hook that copies this file from
the old system to the newly updated one.

[system]
...
variant-name=myvariant-name

A third variant to specify the systems variant is to give it directly in your
system.conf.
This method is primary meant for testing, as this prevents having a generic
rootfs image for all variants!

In your manifest, you can specify variants of an image (e.g. the kernel here) as
follows:

[image.kernel.variant-1]
filename=variant1.img
...

[image.kernel.variant-2]
filename=variant1.img
...

It is allowed to have both a specific variant as well as a default image in the
same bundle.
If a specific variant of the image is available, it will be used on that system.
On all other systems, the default image will be used instead.

If you have a specific image variant for one of your systems,
it is mandatory to also have a default or specific variant for the same slot
class for any other system you intend to update.
RAUC will report an error if for example a bootloader image is only present for
variant A when you try to install on variant B.
This should prevent bricking your device by unintentional partial updates.

7.6. Manually Writing Images to Slots

In order to write an image to a slot without using update mechanics like hooks,
slot status etc. use:

rauc write-slot <slotname> <image>

This uses the correct handler to write the image to the slot. It is useful for
development scenarios as well as initial provisioning of embedded boards.

7.7. Updating the Bootloader

Updating the bootloader is a special case, as it is a single point of failure on
most systems:
The selection of which redundant system images should be booted cannot
itself be implemented in a redundant component (otherwise there would need to
be an even earlier selection component).

Some SoCs contain a fixed firmware or ROM code which already supports redundant
bootloaders, possibly integrated with a HW watchdog or boot counter.
On these platforms, it is possible to have the selection point before the
bootloader, allowing it to be stored redundantly and updated as any other
component.

If redundant bootloaders with fallback is not possible (or too inflexible) on
your platform, you may instead be able to ensure that the bootloader update is
atomic.
This doesn’t support recovering from a buggy bootloader, but will prevent a
non-bootable system caused by an error or power-loss during the update.

Whether atomic bootloader updates can be implemented depends on your
SoC/firmware and storage medium.

7.7.1. Update eMMC Boot Partitions

RAUC supports updating eMMC boot partitions (see the JEDEC standard JESD84-B51 [http://www.jedec.org/standards-documents/results/jesd84-b51]
for details), one of which gets enabled atomically via configuration registers
in the eMMC (ext_csd registers).

[image: _images/emmc-bootloader-update.svg]

The required slot type is boot-emmc.
The device to be specified is expected to be the root device.
The boot partitions are derived automatically.
A system.conf could look like this:

[slot.bootloader.0]
device=/dev/mmcblk1
type=boot-emmc

Important

A kernel bug may prevent consistent toggling of the eMMC ext_csd boot
partition register.
Be sure your kernel is >= 4.16-rc7 (resp. >= 4.15.14, >= 4.14.31) or contains
this patch: https://www.spinics.net/lists/linux-mmc/msg48271.html

7.7.2. Update Boot Partition in MBR

Some SoCs (like Xilinx ZynqMP) contain a fixed ROM code, which boots from the
first partition in the MBR partition table of a storage medium.
In order to atomically update the bootloader of such systems, RAUC supports
modifying the MBR to switch the actual location of the first partition
between the first and second halves of a pre-defined disk region.
The active half of the region is the one currently referenced by the MBR’s
first partition entry (i.e. the first partition) while the inactive half is
not referenced by the MBR at all.
A Bootloader update is written into the currently inactive half of the region.
After having written the bootloader, RAUC modifies the MBR’s first partition
entry to point to the formerly inactive half.

[image: _images/rauc-mbr-switch.svg]

The disk region for the MBR boot partition switch has to be configured
in the corresponding slot’s system config section (see below).
This configured disk region must span both potential locations of the boot
partition, i.e. both the first and second halves mentioned above.
The initial MBR must define a boot partition at either the first or the second
half of the configured region.

Consider the following example layout of a storage medium with a boot partition size
of 32 MiB:

	Start…End

	Size

	

	0x0000000…0x00001ff

	512 bytes

	MBR

	0x0000200…0x00fffff

	almost 1MiB

	alignment, state, barebox-environment, …

	
0x0100000…0x40fffff

0x0100000…0x20fffff

0x2100000…0x40fffff

	
64 MiB

32 MiB

32 MiB

	
MBR switch region containing:

- active first half (entry in MBR)

- inactive second half (no entry in MBR)

	0x4100000…

	Remaining size

	other partitions
(partition table entries 2, 3, 4)

RAUC uses the start address and size defined in the first entry of the MBR partition
table to detect whether the first or second half is currently active as the
boot partition and updates the hidden, other half:
After the update, the bootloader is switched by changing the first partition entry
and writing the whole MBR (512 bytes) atomically.

The required slot type is boot-mbr-switch.
The device to be specified is the underlying block device (not the boot
partition!), as the MBR itself is outside of the region.
The region containing both halves is configured using region-start and
region-size.
Both values have to be set in integer decimal bytes and can be post-fixed with
K/M/G/T.

A system.conf section for the example above could look like this:

[slot.bootloader.0]
device=/dev/mmcblk1
type=boot-mbr-switch
region-start=1048576
region-size=64M

It defines a region starting at 0x100000 with a size of 64M.
This region will be split up into two region halves of equal size by RAUC
internally.
The resulting first half begins at the start of the region, i.e.
0x100000, and has a size of 32M.
The second half begins in the middle of the region (0x100000 + 32M =
0x2100000) and ends at the end of the defined region.
The MBR’s boot partition entry should initially point to 0x100000, with a
size of 32M.
This must be followed by a “hole” with a size of 32MB before the start of
the next partition entry (at 0x4100000).

7.7.3. Update Boot Partition in GPT

Systems booting via UEFI have a special partition, called the EFI system
partition (ESP), which contains the bootloader to be started by the UEFI
firmware.
Also, some newer ARM SoCs support loading the bootloader directly from a GPT
partition.

To allow atomic updates of these partitions, RAUC supports changing the GPT to
switch the first GPT partition entry between the first and second halves of a
region configured for that purpose.
This works similarly to the handling of a MBR boot partition entry as described
in the previous section.
It requires RAUC to be compiled with GPT support (./configure --enable-gpt)
and adds a dependency on libfdisk.

The required slot type is boot-gpt-switch.
The device to be specified is expected to be the underlying block device.
The boot partitions are derived by the definition of the values region-start
and region-size.
Both values have to be set in integer decimal bytes and can be post-fixed with
K/M/G/T.

To ensure that the resulting GPT entries are well aligned, the region start must
be a multiple of the grain value (as used by sfdisk), which is 1MB by
default.
Accordingly, the region size must be aligned to twice the grain value (to
ensure that the start of the second half is aligned as well).

Note that RAUC expects that the partition table always points exactly to one of
the halves.

A system.conf section could look like this:

[slot.esp.0]
device=/dev/sda
type=boot-gpt-switch
region-start=1M
region-size=64M

7.7.4. Bootloader Update Ideas

The NXP i.MX6 supports up to four bootloader copies when booting from NAND
flash.
The ROM code will try each copy in turn until it finds one which is readable
without uncorrectable ECC errors and has a correct header.
By using the trait of NAND flash that interrupted writes cause ECC errors and
writing the first page (containing the header) last, the bootloader images can
be replaced one after the other, while ensuring that the system will boot even in
case of a crash or power failure.

The slot type could be called “boot-imx6-nand” analogous to eMMC.

7.7.5. Considerations When Updating the Bootloader

Booting an old system with a new bootloader is usually not tested during
development, increasing the risk of problems appearing only in the field.
If you want to address this issue do not add the bootloader to your bundle, but
rather use an approach like this:

	Store a copy of the bootloader in the rootfs.

	Use RAUC only to update the rootfs. The combinations to test
can be reduced by limiting which old versions are supported by an update.

	Reboot into the new system.

	On boot, before starting the application, check that the current slot
is ‘sane’. Then check if the installed bootloader is older than the
version shipped in the (new) rootfs. In that case:

	Disable the old rootfs slot and update the bootloader.

	Reboot

	Start the application.

This way you still have fallback support for the rootfs upgrade and need
to test only:

	The sanity check functionality and the bootloader installation when started
from old bootloader and new rootfs

	Normal operation when started from new bootloader and new rootfs

The case of new bootloader with old rootfs can never happen, because you
disable the old one from the new before installing a new bootloader.

If you need to ensure that you can fall back to the secondary slot even after
performing the bootloader update, you should check that the “other” slot
contains the same bootloader version as the currently running one during the
sanity check.
This means that you need to update both slots in turn before the bootloader is
updated.

7.8. Updating Sub-Devices

Besides the internal storage, some systems have external components or
sub-devices which can be updated.
For example:

	Firmware for micro-controllers on modular boards

	Firmware for a system management controller

	FPGA bitstreams (stored in a separate flash)

	Other Linux-based systems in the same enclosure

	Software for third-party hardware components

In many cases, these components have some custom interface to query the
currently installed version and to upload an update.
They may or may not have internal redundancy or recovery mechanisms as well.

Although it is possible to configure RAUC slots for these and let it call a
script to perform the installation, there are some disadvantages to this
approach:

	After a fallback to an older version in an A/B scenario, the sub-devices may be
running an incompatible (newer) version.

	A modular sub-device may be replaced and still has an old firmware version
installed.

	The number of sub-devices may not be fixed, so each device would need a
different slot configuration.

Instead, a more robust approach is to store the sub-device firmware in the
rootfs and (if needed) update them to the current versions during boot.
This ensures that the sub-devices are always running the correct set of versions
corresponding to the version of the main application.

If the bootloader falls back to the previous version on the main system, the
same mechanism will downgrade the sub-devices as needed.
During a downgrade, sub-devices which are running Linux with RAUC in an A/B
scenario will detect that the image to be installed already matches the one in
the other slot and avoid unnecessary installations.

7.9. Migrating to an Updated Bundle Version

As RAUC undergoes constant development, it might be extended and new
features or enhancements will make their way into RAUC.
Thus, also the sections and options contained in the bundle manifest may be
extended over time.

To assure a well-defined and controlled update procedure,
RAUC is rather strict in parsing the manifest and will reject bundles
containing unknown configuration options.

But, this does not prevent you from being able to use those new RAUC features
on your current system.
All you have to do is to perform an intermediate update:

	Create a bundle containing a rootfs with the recent RAUC version,
but not containing the new RAUC features in its manifest.

	Update your system and reboot

	Now you have a system with a recent RAUC version which is able to
interpret and appropriately handle a bundle with the latest options

7.10. Software Deployment

When designing your update infrastructure, you must think about how to deploy
the updates to your device(s).
In general, you have two major options:
Deployment via storage media such as USB sticks or network-based deployment.

As RAUC uses signed bundles instead of e.g. trusted connections to enable update
author verification, RAUC fully supports both methods with the same technique
and you may also use both of them in parallel.

Some influential factors on the method to used can be:

	Do you have network access on the device?

	How many devices have to be updated?

	Who will perform the update?

7.10.1. Deployment via Storage Media

[image: _images/usb-updates.svg]

This method is mainly used for decentralized updates of devices without network
access (either due to missing infrastructure or because of security concerns).

To handle deployment via storage media, you need a component that detects the
plugged-in storage media and calls RAUC to trigger the actual installation.

When using systemd, you could use automount [https://www.freedesktop.org/software/systemd/man/systemd.automount.html] units for detecting plugged-in
media and trigger an installation.

7.10.2. Deployment via Deployment Server

[image: _images/ota-updates.svg]

Deployment over a network is especially useful when having a larger set of
devices to update or direct access to these devices is tricky.

As RAUC focuses on update handling on the target side, it does not provide a
deployment server out of the box.
But if you do not already have a deployment infrastructure, there a few Open
Source deployment server implementations available in the wilderness.

One of it worth being mentioned is
hawkBit [https://eclipse.org/hawkbit/] from the Eclipse IoT project, which
also provides some strategies for rollout management for larger-scale device
farms.

7.10.2.1. RAUC hawkBit updater (C)

The rauc-hawkbit-updater is a separate application project developed under the
rauc organization umbrella.
It aims to provide a ready-to-use bridge between the hawkBit REST DDR API on
one side and the RAUC D-Bus API on the other.

For more information visit it on GitHub:

https://github.com/rauc/rauc-hawkbit-updater

7.10.2.2. The RAUC hawkBit client (python)

As a separate project, the RAUC development team provides a Python-based
example application that acts as a hawkBit client via its REST DDI-API while
controlling RAUC via D-Bus.

For more information visit it on GitHub:

https://github.com/rauc/rauc-hawkbit

It is also available via pypi:

https://pypi.python.org/pypi/rauc-hawkbit/

7.10.2.3. Upparat: Client for AWS IoT Jobs (python)

Upparat acts as a client for AWS IoT Jobs [https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html] that can be used together with RAUC.

For more information visit it on GitHub:

https://github.com/caruhome/upparat

It is also available via pypi:

https://pypi.org/project/upparat/

8. Design Checklist

This checklist is intended to help you verify that your design and implementation
cover the important corner-cases and details.
Even if not all items are ticked off for your system, it’s useful to have at
least thought about them.
Most of these are general considerations and not strictly RAUC specific.

8.1. General

	System compatible is specific enough ☐

	Bundle version policy defined ☐

	Bundle contains all software components ☐

	Bundles are created automatically by a build system ☐

	Bundles use the verity format ☐

	Bundle format plain is disabled in system.conf ☐

	Bundle deployment mechanism defined (pull or push via the network, from
USB/SD, …) ☐

	Proper slot status file location(s) defined (preferably central status) ☐

8.2. Slot Layout

	Slot layout provides the desired redundancy ☐

	Complexity vs. simplicity trade-offs understood ☐

	Single points of failure identified and well tested ☐

	Factory disk image includes all slots with default contents ☐

	Appropriate image formats selected (tar or filesystem-image) ☐

	Bootloader uses the same names configured in system.conf as bootname ☐

	Bootloader update mechanism defined (or declared as fixed) ☐

8.3. Recovery Mechanism

	The initial (factory) boot configuration is correct ☐

	Boot failures are detected by the bootloader ☐

	Booting the same slot is retried the correct number of times (once or more) ☐

	The behavior if one slot fails to boot is defined (fallback to old version or
not) ☐

	The behavior if all slots fail to boot is defined (retry or poweroff) ☐

8.3.1. If Using a HW Watchdog for Error Detection

	Watchdog is never disabled before application is ready ☐

	Bootloader distinguishes watchdog resets from normal boot ☐

	Bootloader ensures the watchdog is enabled before starting the kernel ☐

	The watchdog reset reinitializes the whole system (power supplies, storage,
SoC, …) ☐

	All essential services are monitored by the watchdog ☐

8.3.2. If Not Using a HW Watchdog for Error Detection

	Bootloader detects failed boots via a counter ☐

	Boot counter is reset on a successful boot ☐

	All essential services work before confirming the current boot as successful ☐

8.4. Security

	PKI configured ☐

	Certificate validity periods defined ☐

	Systems always have correct time ☐ or

	Validity period is large enough ☐

	Key revocation tested ☐

	Updated CRLs can be deployed in time ☐ or

	CRLs do not expire ☐

	Key rollover tested ☐

	Separate development and release keys deployed ☐

	Per-user or per-role keys deployed ☐

8.5. Data Migration

	Passwords/SSH keys are preserved during updates ☐

	Shared data is handled correctly during up- and downgrades ☐

9. Frequently Asked Questions

9.1. Why doesn’t the installed system use the whole partition?

The filesystem image installed via RAUC was probably created for a size smaller
than the partition on the target device.

Especially in cases where the same bundle will be installed on devices which use
different partition sizes, tar archives are preferable to filesystem images.
When RAUC installs from a tar archive, it will first create a new filesystem on
the target partition, allowing use of the full size.

9.2. Is it possible to use RAUC without D-Bus (Client/Server mode)?

Yes. If you compile RAUC using the --disable-service configure option, you
will be able to compile RAUC without service mode and without D-Bus support:

./configure --disable-service

Then every call of the command line tool will be executed directly rather than
being forwarded to the RAUC service process running on your machine.

9.3. Why does RAUC not have an ext2 / ext3 file type?

ext4 is the successor of ext3. There is no advantage in using ext3 over ext4.

Some people still tend to select ext2 when they want a file system without
journaling. This is not necessary, as one can turn off journaling in ext4,
either during creation:

mkfs.ext4 -O ^has_journal

or later with:

tune2fs -O ^has_journal

Note that even if there is only an ext4 slot type available, potentially each
file system mountable as ext4 should work (with the filename suffix adapted).

9.4. Is the RAUC bundle format forwards/backwards compatible?

The basic bundle format has not changed so far (squashfs containing images and
the manifest, with a CMS signature), which means that newer versions can
install old bundles.
Going forward, any issue with installing old bundles would be considered a bug.

Newer RAUC versions have added features and slot types, though (such as casync,
eMMC boot partitions, MBR/GPT partition switching).
If you use those features, older versions of RAUC that cannot handle them will
refuse to install the bundle.
As long as you don’t use new features, our intention is that bundles created by
newer versions will be installable by older versions.

There are ideas of introducing a new bundle format to allow streaming
installation (over the network), but we won’t remove support for the original
format.

If there are ever reasons that require an incompatible change, you can use a
two step migration:
You can use an intermediate update to ship a new RAUC binary in a bundle
created by the old (compatible) version.
Then use the newly installed RAUC binary for the real update.

9.5. Can I use RAUC with a dm-verity-protected partition?

Yes you can, as the offline-generated dm-verity hash tree is simply part of
the image that RAUC writes to the partition.
To ensure RAUC does not corrupt the partition by executing hooks or writing
slot status information, use type=raw in the respective slot config and
use a global (see slot status file) on a separate
non-redundant partition with setting statusfile=</path/to/global.status>.

9.6. Can I use RAUC with a dm-crypt-protected partition?

Yes you can, by using the /dev/mapper/<devicename> as the device for the
slot (with the type of the filesystem of your choice).
This way, RAUC interacts only with the unencrypted device/content.

For example, with an encrypted root filesystem slot (perhaps unlocked by an
initramfs loaded from a different partition):

[slot.rootfs.0]
device=/dev/mapper/crypt-rootfs0
type=ext4
bootname=system0

Remember to unlock the inactive slots as well so that RAUC can write to them.

9.7. What causes a payload size that is not a multiple of 4kiB?

RAUC versions up to 1.4 had an issue in the casync bundle signature generation,
which caused two signatures to be appended.
While the squashfs payload size is a multiple of 4kiB, the end of the first
signature was not aligned.
As RAUC uses the second (“outer”) signature during verification, this didn’t
cause problems.
RAUC 1.5 fixed the casync bundle generation and added stricter checks, which
rejected the older bundles.
In RAUC 1.5.1, this was reduced to a notification message.

To avoid the message, you can recreate the bundle with RAUC 1.5 and newer.

9.8. How can I refer to devices if the numbering is not fixed?

There are many reasons why device numbering might change from one kernel
version to the next, across boots or even between hardware variants.
In the context of RAUC, this is mainly relevant for block, MTD and UBI devices.

In almost all cases, the proper way to configure this is to use udev rules [https://www.freedesktop.org/software/systemd/man/udev.html].

For block devices, udev ships with rules which create symlinks in
/dev/disk/by-path/.
These are not affected by changes in the probe order or by other devices that
are not always connected.
For example, on an emulated ARM machine, this results in:

root@qemuarm:~# ls -l /dev/disk/by-path
lrwxrwxrwx 1 root root 9 Nov 18 12:46 platform-a003c00.virtio_mmio -> ../../vda

By using /dev/disk/by-path/platform-a003c00.virtio_mmio in your
configuration, you ensure that you always refer to the same block device.

For UBI volumes, no equivalent rules are currently shipped by udev, so custom
rules can be used.
Depending on how the symlinks should be named, different rules could be used:

Use the volume name instead of the number
SUBSYSTEM=="ubi", KERNEL=="ubi*_*", ATTRS{mtd_num}=="*", SYMLINK+="$parent_%s{name}"
Use the MTD device number instead of the UBI device number
SUBSYSTEM=="ubi", KERNEL=="ubi*_*", ATTRS{mtd_num}=="*", SYMLINK+="ubi_mtd%s{mtd_num}_%s{name}"
Use the MTD device name instead of the UBI device number
SUBSYSTEM=="ubi", KERNEL=="ubi*_*", ATTRS{mtd_num}=="*", IMPORT{program}="/bin/sh -ec 'echo MTD_NAME=$(cat /sys/class/mtd/mtd%s{mtd_num}/name)'" SYMLINK+="ubi_%E{MTD_NAME}_%s{name}"

When enabling all of these rules (which you should not do), you will get
something like:

crw------- 1 root root 249, 0 Nov 18 13:46 /dev/ubi0
crw------- 1 root root 249, 1 Nov 18 13:46 /dev/ubi0_0
lrwxrwxrwx 1 root root 6 Nov 18 13:46 /dev/ubi0_rauc-test -> ubi0_0
lrwxrwxrwx 1 root root 6 Nov 18 13:46 /dev/ubi_nandsim_rauc-test -> ubi0_0
crw------- 1 root root 10, 59 Nov 18 13:46 /dev/ubi_ctrl
lrwxrwxrwx 1 root root 6 Nov 18 13:46 /dev/ubi_mtd3_rauc-test -> ubi0_0

Custom udev rules can also be very useful when you want to refer to the active
data partition (in a scenario with redundant data partitions) with a fixed
name.

10. Reference

	System Configuration File

	Manifest

	Bundle Formats

	Slot Status

	Command Line Tool

	Custom Handlers (Interface)

	Hooks (Interface)

	D-Bus API

	RAUC’s Basic Update Procedure

	Bootloader Interaction

10.1. System Configuration File

A configuration file located in /etc/rauc/system.conf describes the
number and type of available slots.
It is used to validate storage locations for update images.
Each board type requires its special configuration.

This file is part of the root file system.

Note

When changing the configuration file on your running target you need
to restart the RAUC service in order to let the changes take effect.

Example configuration:

[system]
compatible=FooCorp Super BarBazzer
bootloader=barebox
statusfile=/data/central-status.raucs
bundle-formats=-plain

[keyring]
path=/etc/rauc/keyring.pem

[handlers]
system-info=/usr/lib/rauc/info-provider.sh
post-install=/usr/lib/rauc/postinst.sh

[slot.rootfs.0]
device=/dev/sda0
type=ext4
bootname=system0

[slot.rootfs.1]
device=/dev/sda1
type=ext4
bootname=system1

[system] section

	compatible

	A user-defined compatible string that describes the target hardware as
specific enough as required to prevent faulty updating systems with the wrong
firmware. It will be matched against the compatible string defined in the
update manifest.

	bootloader

	The bootloader implementation RAUC should use for its slot switching
mechanism. Currently supported values (and bootloaders) are barebox,
grub, uboot, efi, custom, noop.

	bundle-formats

	This option controls which bundle formats are allowed
when verifying a bundle.
You can either specify them explicitly by using a space-separated list for
format names (such as plain verity).
In this case, any any future changes of the built-in defaults will have no
effect.

Alternatively, you can use format names prefixed by - or + (such as
-plain) to enable or disable formats relative to the default
configuration. This way, formats added in newer releases will be active
automatically.

	mountprefix

	Prefix of the path where bundles and slots will be mounted. Can be overwritten
by the command line option --mount. Defaults to /mnt/rauc/.

	grubenv

	Only valid when bootloader is set to grub.
Specifies the path under which the GRUB environment can be accessed.

	barebox-statename

	Only valid when bootloader is set to barebox.
Overwrites the default state state to a user-defined state name. If this
key not exists, the bootchooser framework searches per default for /state
or /aliases/state.

	barebox-dtbpath

	Only valid when bootloader is set to barebox.
Allows to set a path to a separate devicetree (dtb) file to be used for
reading barebox state [https://www.barebox.org/doc/latest/user/state.html]
definition from.
This is mainly useful for systems that do not use devicetrees by default,
like x86 systems.

Note

Requires to have at least dt-utils [https://git.pengutronix.de/cgit/tools/dt-utils] version 2021.03.0

	boot-attempts

	This configures the number of boot attempts to set when a slot is marked good
through the D-Bus API or via the command line tool.
This is currently only supported when bootloader is set to uboot and
defaults to 3 if not set.

	boot-attempts-primary

	This configures the number of boot attempts to set when a slot is marked as
primary (ie, when an update was installed successfully).
This is currently only supported when bootloader is set to uboot and
defaults to 3 if not set.

	efi-use-bootnext

	Only valid when bootloader is set to efi.
If set to false, this disables using efi variable BootNext for
marking a slot primary.
This is useful for setups where the BIOS already handles the slot switching
on watchdog resets.
Behavior defaults to true if option is not set.

	activate-installed

	This boolean value controls if a freshly installed slot is automatically
marked active with respect to the used bootloader. Its default value is
true which means that this slot is going to be started the next time the
system boots. If the value of this parameter is false the slot has to be
activated manually in order to be booted, see section Manually Switch to a Different Slot.

	statusfile

	This key should be set to point to a central file where slot status
information should be stored (e.g. slot-specific metadata, see
Slot Status).
This file must be located on a non-redundant filesystem which is not
overwritten during updates.
In most cases, a central status file is preferable to per-slot status files
as it allows to store data also for read-only or (temporary) filesystem-less
slots.
However, if a per-slot status is required as one of the above-noted
requirements cannot be met, one can use the value per-slot to document
this decision.
For background compatibility this option is not mandatory and will default to
per-slot status files if not set.

	max-bundle-download-size

	Defines the maximum downloadable bundle size in bytes, and thus must be
a simple integer value (without unit) greater than zero.
It overwrites the compiled-in default value of 8388608 (8 MiB).

	variant-name

	String to be used as variant name for this board.
If set, neither variant-file nor variant-dtb must be set.
Refer chapter Handling Board Variants With a Single Bundle for more information.

	variant-file

	File containing variant name for this board.
If set, neither variant-name nor variant-dtb must be set.
Refer chapter Handling Board Variants With a Single Bundle for more information.

	variant-dtb

	If set to true, use current device tree compatible as this boards variant
name.
If set, neither variant-name nor variant-file must be set.
Refer chapter Handling Board Variants With a Single Bundle for more information.

[keyring] section

The keyring section refers to the trusted keyring used for signature
verification.
Both path and directory options can be used together if
desired, though only one or the other is necessary to verify the bundle
signature.

	path

	Path to the keyring file in PEM format. Either absolute or relative to the
system.conf file.

	directory

	Path to the keyring directory containing one or more certificates.
Each file in this directory must contain exactly one certificate in CRL or
PEM format.
The filename of each certificate must have the form hash.N for a certificate
or hash.rN for CRLs;
where hash is obtained by X509_NAME_hash(3) or the --hash option of
openssl(1) x509 or crl commands.
See documentation in X509_LOOKUP_hash_dir(3) for details.

	use-bundle-signing-time=<true/false>

	If this boolean value is set to true then the bundle signing time
is used instead of the current system time for certificate validation.

	check-crl=<true/false>

	If this boolean value is set to true, RAUC will enable checking of CRLs
(Certificate Revocation Lists) stored in the keyring together with the CA
certificates.
Note that CRLs have an expiration time in their signature, so you need to
make sure you don’t end up with an expired CRL on your device (which would
block further updates).

	check-purpose

	This option can be used to set the OpenSSL certificate purpose used during
chain verification.
Certificates in the chain with incompatible purposes are rejected.
Possible values are provided by OpenSSL (any, sslclient,
sslserver, nssslserver, smimesign, smimeencrypt) and RAUC
(codesign).
See -purpose and VERIFY OPERATION in the OpenSSL verify [https://www.openssl.org/docs/man1.1.1/man1/verify.html] manual page
and the Certificate Key Usage Attributes section for more information.

[streaming] section

The streaming section contains streaming-related settings.
For more information about using the streaming support of RAUC, refer to
HTTP Streaming.

	sandbox-user

	This option can be used to set the user name which is used to run the
streaming helper process.
By default, the nobody user is used.
At compile time, the default can be defined using the
--with-streaming-user=USERNAME configure option.

	tls-cert

	This option can be used to set the path or PKCS#11 URL for the TLS/HTTPS
client certificate.

	tls-key

	This option can be used to set the path or PKCS#11 URL for the TLS/HTTPS
client private key.

	tls-ca

	This option can be used to set the path of the CA certificate which should be
used instead of the system wide store of trusted TLS/HTTPS certificates.

[casync] section

The casync section contains casync-related settings.
For more information about using the casync support of RAUC, refer to
RAUC casync Support.

	storepath

	Allows to set the path to use as chunk store path for casync to a fixed one.
This is useful if your chunk store is on a dedicated server and will be the
same pool for each update you perform.
By default, the chunk store path is derived from the location of the RAUC
bundle you install.

	tmppath

	Allows to set the path to use as temporary directory for casync.
The temporary directory used by casync can be specified using the TMPDIR
environment variable. It falls back to /var/tmp if unset.
If tmppath is set then RAUC runs casync with TMPDIR sets to that path.
By default, the temporary directory is left unset by RAUC and casync uses its
internal default value /var/tmp.

[autoinstall] section

The auto-install feature allows to configure a path that will be checked upon
RAUC service startup.
If there is a bundle placed under this specific path, this bundle will be
installed automatically without any further interaction.

This feature is useful for automatically updating the slot RAUC currently runs
from, like for asymmetric redundancy setups where the update is always
performed from a dedicated (recovery) slot.

	path

	The full path of the bundle file to check for.
If file at path exists, auto-install will be triggered.

[handlers] section

Handlers allow to customize RAUC by placing scripts in the system that RAUC can
call for different purposes. All parameters expect pathnames to the script to
be executed. Pathnames are either absolute or relative to the system.conf file
location.

RAUC passes a set of environment variables to handler scripts.
See details about using handlers in Custom Handlers (Interface).

	system-info

	This handler will be called when RAUC starts up, right after loading the
system configuration file.
It is used for obtaining further information about the individual system RAUC
runs on.
The handler script must print the information to standard output in form of
key value pairs KEY=value.
The following variables are supported:

	RAUC_SYSTEM_SERIAL

	Serial number of the individual board

	pre-install

	This handler will be called right before RAUC starts with the installation.
This is after RAUC has verified and mounted the bundle, thus you can access
bundle content.

	post-install

	This handler will be called after a successful installation.
The bundle is still mounted at this moment, thus you could access data in it
if required.

	bootloader-custom-backend

	This handler will be called to trigger the following actions:

	get the primary slot

	set the primary slot

	get the boot state

	set the boot state

if a custom bootloader backend is used.
See Custom for more details.

Note

When using a full custom installation
(see [handler] section)
RAUC will not execute any system handler script.

[slot.<slot-class>.<idx>] section

Each slot is identified by a section starting with slot. followed by
the slot class name, and a slot number.
The <slot-class> name is used in the update manifest to target the correct
set of slots. It must not contain any . (dots) as these are used as
hierarchical separator.

	device=</path/to/dev>

	The slot’s device path. This one is mandatory.

	type=<type>

	The type describing the slot. Currently supported <type> values are raw,
nand, nor, ubivol, ubifs, ext4, vfat.
See table Slot Type for a more detailed list of these different types.
Defaults to raw if none given.

	bootname=<name>

	Registers the slot for being handled by the
bootselection interface with the <name>
specified.
The value must be unique across all slots.
Only slots without a parent entry can have a bootname.
The actual meaning of the name provided depends on the bootloader
implementation used.

	parent=<slot>

	The parent entry is used to bind additional slots to a bootable root
file system <slot>.
Indirect parent references are discouraged, but supported for now.
This is used together with the bootname to identify the set of currently
active slots, so that the inactive one can be selected as the update target.
The parent slot is referenced using the form <slot-class>.<idx>.

	allow-mounted=<true/false>

	Setting this entry true tells RAUC that the slot may be updated even if
it is already mounted.
Such a slot can be updated only by a custom install hook.

	readonly=<true/false>

	Marks the slot as existing but not updatable. May be used for sanity checking
or informative purpose. A readonly slot cannot be a target slot.

	install-same=<true/false>

	If set to false, this will tell RAUC to skip writing slots that already
have the same content as the one that should be installed.
Having the ‘same’ content means that the hash value stored for the target
slot and the hash value of the update image are equal.
The default value is true here, meaning that no optimization will be done
as this can be unexpected if RAUC is not the only one that potentially alters
a slot’s content.

This replaces the deprecated entries ignore-checksum and
force-install-same.

	resize=<true/false>

	If set to true this will tell RAUC to resize the filesystem after having
written the image to this slot. This only has an effect when writing an ext4
file system to an ext4 slot, i.e. if the slot has``type=ext4`` set.

	extra-mount-opts=<options>

	Allows to specify custom mount options that will be passed to the slots
mount call as -o argument value.

10.2. Manifest

The manifest file located in a RAUC bundle describes the images packed in the
bundle and their corresponding target slot class.

A valid RAUC manifest file must be named manifest.raucm.

[update]
compatible=FooCorp Super BarBazzer
version=2016.08-1

[bundle]
format=verity
verity-hash=3fcb193cb4fd475aa174efa1f1e979b2d649bf7f8224cc97f4413b5ee141a4e9
verity-salt=4b7b8657d03759d387f24fb7bb46891771e1b370fff38c70488e6381d6a10e49
verity-size=24576

[image.rootfs]
filename=rootfs.ext4
size=419430400
sha256=b14c1457dc10469418b4154fef29a90e1ffb4dddd308bf0f2456d436963ef5b3

[image.appfs]
filename=appfs.ext4
size=219430400
sha256=ecf4c031d01cb9bfa9aa5ecfce93efcf9149544bdbf91178d2c2d9d1d24076ca

[update] section

	compatible

	A user-defined compatible string that must match the compatible string of the
system the bundle should be installed on.

	version

	A free version field that can be used to provide and track version
information. No checks will be performed on this version by RAUC itself,
although a handler can use this information to reject updates.

	description

	A free-form description field that can be used to provide human-readable
bundle information.

	build

	A build id that would typically hold the build date or some build
information provided by the bundle creation environment. This can help to
determine the date and origin of the built bundle.

[bundle] section

	format

	Either plain (default) or verity.
This selects the format use when wrapping the payload
during bundle creation.

	verity-hash

	The dm-verity root hash over the bundle payload in hexadecimal.
RAUC determines this value automatically, so it should be left unspecified
when preparing a manifest for bundle creation.

	verity-salt

	The dm-verity salt over the bundle payload in hexadecimal.
RAUC determines this value automatically, so it should be left unspecified
when preparing a manifest for bundle creation.

	verity-size

	The size of the dm-verity hash tree.
RAUC determines this value automatically, so it should be left unspecified
when preparing a manifest for bundle creation.

[hooks] section

	filename

	Hook script path name, relative to the bundle content.

	hooks

	List of hooks enabled for this bundle.
See Install Hooks for more details.

Valid items are: install-check

[handler] section

	filename

	Handler script path name, relative to the bundle content. Used to fully
replace default update process.

	args

	Arguments to pass to the handler script, such as args=--verbose

[image.<slot-class>] section

	filename

	Name of the image file (relative to bundle content).
RAUC uses the file extension and the slot type to decide how to extract the
image file content to the slot.

	sha256

	sha256 of image file. RAUC determines this value automatically when creating
a bundle, thus it is not required to set this by hand.

	size

	size of image file. RAUC determines this value automatically when creating a
bundle, thus it is not required to set this by hand.

	hooks

	List of per-slot hooks enabled for this image.
See Slot Hooks for more details.

Valid items are: pre-install, install, post-install

10.3. Bundle Formats

RAUC currently supports two bundle formats (plain and verity) and
additional formats could be added to support features such as encryption.
Version 1.4 (released on 2020-06-20) and earlier only supported a single format
which is now named plain, which should be used as long as compatibility to
those versions is required.

The verity format was added to prepare for future use cases (such as
network streaming and encryption), for better parallelization of installation
with hash verification and to detect modification of the bundle during
installation.

The bundle format is detected when reading a bundle and checked against the set
of allowed formats configured in the system.conf (see bundle-formats).

10.3.1. plain Format

In this case, a bundle consists of:

	squashfs filesystem containing manifest and images

	detached CMS signature over the squashfs filesystem

	size of the CMS signature

With this format, the signature is checked in a full pass over the squashfs
before mounting or accessing it.
This makes it necessary to protect the bundle against modification by untrusted
processes.
To ensure exclusive access, RAUC takes ownership of the file (using chown) and
uses file leases to detect other open file descriptors.

10.3.2. verity Format

In this case, a bundle consists of:

	squashfs filesystem containing manifest (without verity metadata) and images

	dm-verity [https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html]
hash tree over the squashfs filesystem

	CMS signature over an inline manifest (with verity metadata)

	size of the CMS signature

With this format, the manifest is contained in the CMS signature itself, making
it accessible without first hashing the full squashfs.
The manifest contains the additional metadata (root hash, salt and size) necessary to authenticate the hash tree and in turn each
block of the squashfs filesystem.

During installation, the kernel’s verity device mapper target is used on top of
the loopback block device to authenticate each filesystem block as needed.

When using rauc extract (or other commands which need access to the squashfs
except install), the squashfs is checked before accessing it by RAUC itself
without using the kernel’s device mapper target, as they are often used by
normal users on their development hosts.
It this case, the same mechanism for ensuring exclusive access as with plain
bundles is used.

10.3.3. External Signing and PKI

Some industrialization procedures require signing artifacts in a dedicated
secure room with restricted access (as Public Key Infrastructure aka PKI).

For this case rauc extract-signature can extract the bundle signature and
rauc replace-signature can replace the bundle signature with a new one.

As a verity format bundle signature is not a detached CMS, you can easily
resign it externally.

Extract the bundle signature
$ rauc extract-signature --keyring ca.cert.pem bundle.raucb extracted-signature.cms
Extract embedded manifest from the verity bundle CMS
$ openssl cms -verify -CAfile ca.cert.pem -out manifest.raucm -inform DER -in extracted-signature.cms
Or without trust chain verification
$ openssl cms -verify -noverify -out manifest.raucm -inform DER -in extracted-signature.cms
Sign the manifest with your external PKI (for this example, it was made by an `openssl` command)
$ openssl cms -sign -signer new-signer.cert.pem -CAfile new-ca-cert.pem -inkey new-signer.key.pem -nodetach -in manifest.raucm -outform der -out new-signature.cms
Finally replace the bundle signature
$ rauc replace-signature --keyring ca-cert.pem --signing-keyring new-ca-cert.pem bundle.raucb new-signature.cms new-bundle.raucb

For the plain format bundle signature it’s slightly different, as the
signature is detached, it contains just the message digest.
You can use openssl asn1parse for retrieving the message digest in the CMS.

Find the line which contains `:messageDigest` in `OBJECT` section
and get offset of the next line which contains `OCTET STRING` (1125 in this case)
$ openssl asn1parse -inform der -in extracted-signature.cms | grep -C 3 messageDigest
1093:d=7 hl=2 l= 15 cons: SET
1095:d=8 hl=2 l= 13 prim: UTCTIME :170926142121Z
1110:d=6 hl=2 l= 47 cons: SEQUENCE
1112:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
1123:d=7 hl=2 l= 34 cons: SET
1125:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:F3C783DF3F76D658798A7232255A155BB4E5DD90B0DDFFA57EE01968055161C5
1159:d=6 hl=2 l= 121 cons: SEQUENCE
And extract the digest
$ openssl asn1parse -strparse 1125 -inform DER -in extracted-signature.cms -noout -out - | xxd -ps -c 32
f3c783df3f76d658798a7232255a155bb4e5dd90b0ddffa57ee01968055161c5

Unfortunately the OpenSSL command line tool does not support signing a
pre-existing digest, so you may need to use the PR openssl/openssl#15348 [https://github.com/openssl/openssl/pull/15348].
This is not necessary for a verity bundle format, as its CMS signature directly
contains the manifest.

Another method could be to extract the original binary from the RAUC bundle.

$ BUNDLE_SIZE="$(stat -L -c%s bundle.raucb)"
$ CMS_SIZE="$(printf "%u" "0x$(tail -c "+$(((${BUNDLE_SIZE} - 7)))" bundle.raucb | xxd -ps)")"
$ CMS_OFFSET=$(((${BUNDLE_SIZE} - ${CMS_SIZE} - 7)))
Extract binary to sign from the bundle
$ dd if=bundle.raucb of=bundle.rauci bs=1 count=$(((${CMS_OFFSET} - 1)))
$ sha256sum bundle.rauci
f3c783df3f76d658798a7232255a155bb4e5dd90b0ddffa57ee01968055161c5 bundle.rauci
Sign the binary with your PKI (for this example, it was made by an `openssl` command)
$ openssl cms -sign -signer new-signer.cert.pem -CAfile new-ca-cert.pem -inkey new-signer.key.pem -binary -in bundle.rauci -outform der -out new-signature.cms
Finally replace the bundle signature
$ rauc replace-signature --keyring ca-cert.pem --signing-keyring new-ca-cert.pem bundle.raucb new-signature.cms new-bundle.raucb

Note

The asn1parse method can also be used for the verity bundle but replacing
:messageDigest by :pkcs7-data as follows

Find the line which contains `:pkcs7-data` in `OBJECT` section
and get offset of the next line which contains `OCTET STRING` (60 in this case)
$ openssl asn1parse -inform der -in extracted-signature.cms
0:d=0 hl=4 l=1918 cons: SEQUENCE
4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
15:d=1 hl=4 l=1903 cons: cont [0]
19:d=2 hl=4 l=1899 cons: SEQUENCE
23:d=3 hl=2 l= 1 prim: INTEGER :01
26:d=3 hl=2 l= 13 cons: SET
28:d=4 hl=2 l= 11 cons: SEQUENCE
30:d=5 hl=2 l= 9 prim: OBJECT :sha256
41:d=3 hl=4 l= 498 cons: SEQUENCE
45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
56:d=4 hl=4 l= 483 cons: cont [0]
60:d=5 hl=4 l= 479 prim: OCTET STRING :[update]
compatible=Test Config
version=2011.03-2

[bundle]
format=verity
verity-hash=931b44c2989432c0fcfcd215ec94384576b973d70530fdc75b6c4c67b0a60297
verity-salt=ea12cb34c699ebbad0ebee8f6aca0049ee991f289011345d9cdb473ba4fdd285
verity-size=4096

[image.rootfs]
sha256=101a4fc5c369a5c89a51a61bcbacedc9016e9510e59a4383f739ef55521f678d
size=8192
filename=rootfs.img

[image.appfs]
sha256=f95c0891937265df18ff962869b78e32148e7e97eab53fad7341536a24242450
size=8192
filename=appfs.img

543:d=3 hl=4 l= 900 cons: cont [0]
547:d=4 hl=4 l= 896 cons: SEQUENCE
551:d=5 hl=4 l= 616 cons: SEQUENCE
555:d=6 hl=2 l= 3 cons: cont [0]
557:d=7 hl=2 l= 1 prim: INTEGER :02
560:d=6 hl=2 l= 1 prim: INTEGER :01
563:d=6 hl=2 l= 13 cons: SEQUENCE
565:d=7 hl=2 l= 9 prim: OBJECT :sha256WithRSAEncryption
[...]
And extract the manifest
$ openssl asn1parse -strparse 60 -inform DER -in extracted-signature.cms -noout -out -
[update]
compatible=Test Config
version=2011.03-2

[bundle]
format=verity
verity-hash=931b44c2989432c0fcfcd215ec94384576b973d70530fdc75b6c4c67b0a60297
verity-salt=ea12cb34c699ebbad0ebee8f6aca0049ee991f289011345d9cdb473ba4fdd285
verity-size=4096

[image.rootfs]
sha256=101a4fc5c369a5c89a51a61bcbacedc9016e9510e59a4383f739ef55521f678d
size=8192
filename=rootfs.img

[image.appfs]
sha256=f95c0891937265df18ff962869b78e32148e7e97eab53fad7341536a24242450
size=8192
filename=appfs.img

10.4. Slot Status

There is some slot specific metadata that are of interest for RAUC, e.g. a hash
value of the slot’s content (SHA-256 per default) that is matched against its
counterpart of an image inside a bundle to decide if an update of the slot has
to be performed or can be skipped.
These slot metadata can be persisted in one of two ways:
either in a slot status file stored on each slot containing a writable
filesystem or in a central status file that lives on a persistent filesystem
untouched by updates.
The former is RAUC’s default whereas the latter mechanism is enabled by making
use of the optional key statusfile in the system.conf
file.
Both are formatted as INI-like key/value files where the slot information is
grouped in a section named [slot] for the case of a per-slot file or in sections
termed with the slot name (e.g. [slot.rootfs.1]) for the central status file:

[slot]
bundle.compatible=FooCorp Super BarBazzer
bundle.version=2016.08-1
bundle.description=Introduction of Galactic Feature XYZ
bundle.build=2016.08.1/imx6/20170324-7
status=ok
sha256=b14c1457dc10469418b4154fef29a90e1ffb4dddd308bf0f2456d436963ef5b3
size=419430400
installed.timestamp=2017-03-27T09:51:13Z
installed.count=3

For a description of sha256 and size keys see this part of the section Manifest.
Having the slot’s content’s size allows to re-calculate the hash via head -c
<size> <slot-device> | sha256sum or dd bs=<size> count=1 if=<slot-device> |
sha256sum.

The properties bundle.compatible, bundle.version, bundle.description
and bundle.build are copies of the respective manifest properties.
More information can be found in this subsection of
section Manifest.

RAUC also stores the point in time of installing the image to the slot in
installed.timestamp as well as the number of updates so far in
installed.count.
Additionally RAUC tracks the point in time when a bootable slot is activated in
activated.timestamp and the number of activations in activated.count,
see section Manually Switch to a Different Slot.
Comparing both timestamps is useful to decide if an installed slot has ever been
activated or if its activation is still pending.

10.5. Command Line Tool

Usage:
 rauc [OPTION…] <COMMAND>

Options:
 -c, --conf=FILENAME config file
 --cert=PEMFILE|PKCS11-URL cert file or PKCS#11 URL
 --key=PEMFILE|PKCS11-URL key file or PKCS#11 URL
 --keyring=PEMFILE keyring file
 --intermediate=PEMFILE intermediate CA file name
 --mount=PATH mount prefix
 --override-boot-slot=BOOTNAME override auto-detection of booted slot
 --handler-args=ARGS extra handler arguments
 -d, --debug enable debug output
 --version display version
 -h, --help

List of rauc commands:
 bundle Create a bundle
 resign Resign an already signed bundle
 convert Convert classic to casync bundle
 extract-signature Extract the bundle signature
 extract Extract the bundle content
 install Install a bundle
 info Show file information
 mount Mount a bundle (for development purposes)
 service Start RAUC service
 status Show status
 write-slot Write image to slot and bypass all update logic

Environment variables:
 RAUC_PKCS11_MODULE Library filename for PKCS#11 module (signing only)
 RAUC_PKCS11_PIN PIN to use for accessing PKCS#11 keys (signing only)

10.6. Custom Handlers (Interface)

Interaction between RAUC and custom handler shell scripts is done using shell
variables.

	RAUC_SYSTEM_CONFIG

	Path to the system configuration file (default path is /etc/rauc/system.conf)

	RAUC_CURRENT_BOOTNAME

	Bootname of the slot the system is currently booted from

	RAUC_BUNDLE_MOUNT_POINT

	Path to mounted update bundle, e.g. /mnt/rauc/bundle

	RAUC_UPDATE_SOURCE

	A deprecated alias for RAUC_BUNDLE_MOUNT_POINT

	RAUC_MOUNT_PREFIX

	Provides the path prefix that may be used for RAUC mount points

	RAUC_SLOTS

	An iterator list to loop over all existing slots. Each item in the list is
an integer referencing one of the slots. To get the slot parameters, you have to
resolve the per-slot variables (suffixed with <N> placeholder for the
respective slot number).

	RAUC_TARGET_SLOTS

	An iterator list similar to RAUC_SLOTS but only containing slots that
were selected as target slots by the RAUC target slot selection algorithm.
You may use this list for safely installing images into these slots.

	RAUC_SLOT_NAME_<N>

	The name of slot number <N>, e.g. rootfs.0

	RAUC_SLOT_CLASS_<N>

	The class of slot number <N>, e.g. rootfs

	RAUC_SLOT_TYPE_<N>

	The type of slot number <N>, e.g. raw

	RAUC_SLOT_DEVICE_<N>

	The device path of slot number <N>, e.g. /dev/sda1

	RAUC_SLOT_BOOTNAME_<N>

	The bootloader name of slot number <N>, e.g. system0

	RAUC_SLOT_PARENT_<N>

	The name of slot number <N>, empty if none, otherwise name of parent slot

for i in $RAUC_TARGET_SLOTS; do
 eval RAUC_SLOT_DEVICE=\$RAUC_SLOT_DEVICE_${i}
 eval RAUC_IMAGE_NAME=\$RAUC_IMAGE_NAME_${i}
 eval RAUC_IMAGE_DIGEST=\$RAUC_IMAGE_DIGEST_${i}
done

10.7. Hooks (Interface)

10.7.1. Install Hooks Interface

The following environment variables will be passed to the hook executable:

	RAUC_SYSTEM_COMPATIBLE

	The compatible value set in the system configuration file,
e.g. "My First Product"

	RAUC_SYSTEM_VARIANT

	The system’s variant as obtained by the variant source
(refer Handling Board Variants With a Single Bundle)

	RAUC_MF_COMPATIBLE

	The compatible value provided by the current bundle,
e.g. "My Other Product"

	RAUC_MF_VERSION

	The value of the version field as provided by the current bundle,
e.g. "V1.2.1-2020-02-28"

	RAUC_MOUNT_PREFIX

	The global RAUC mount prefix path, e.g. "/run/mount/rauc"

10.7.2. Slot Hooks Interface

The following environment variables will be passed to the hook executable:

	RAUC_SYSTEM_COMPATIBLE

	The compatible value set in the system configuration file,
e.g. "My Special Product"

	RAUC_SYSTEM_VARIANT

	The system’s variant as obtained by the variant source
(refer Handling Board Variants With a Single Bundle)

	RAUC_SLOT_NAME

	The name of the currently installed slot, e.g "rootfs.1".

	RAUC_SLOT_STATE

	The state of the currently installed slot
(will always be inactive for slots we install to)

	RAUC_SLOT_CLASS

	The class of the currently installed slot, e.g. "rootfs"

	RAUC_SLOT_TYPE

	The type of the currently installed slot, e.g. "ext4"

	RAUC_SLOT_DEVICE

	The device path of the currently installed slot, e.g. "/dev/mmcblk0p2"

This equals the device= parameter set in the current slot’s system.conf
entry and represents the target device RAUC installs the update to.
For an install hook, this is the device the hook executable should write
to.

	RAUC_SLOT_BOOTNAME

	For slots with a bootname (those that can be selected by the bootloader),
the bootname of the currently installed slot, e.g. "system1"
For slots with a parent, the parent’s bootname is used.
Note that in many cases, it’s better to use the explicit RAUC_SLOT_NAME
to select different behaviour in the hook, than to rely indirectly on the
bootname.

	RAUC_SLOT_PARENT

	If set, the parent of the currently installed slot, e.g. "rootfs.1"

	RAUC_SLOT_MOUNT_POINT

	If available, the mount point of the currently installed slot,
e.g. "/run/mount/rauc/rootfs.1"

For mountable slots, i.e. those with a file system type, RAUC will attempt
to automatically mount the slot if a pre-install or post-install hook is
given and provide the slot’s current mount point under this env variable.

	RAUC_IMAGE_NAME

	If set, the file name of the image currently to be installed,
e.g. "product-rootfs.img"

	RAUC_IMAGE_SIZE

	If set, the size of the image currently to be installed,
e.g. "82628"

	RAUC_IMAGE_DIGEST

	If set, the digest of the image currently to be installed,
e.g. "e29364a81c542755fd5b2c2461cd12b0610b67ceacabce41c102bba4202f2b43"

	RAUC_IMAGE_CLASS

	If set, the target class of the image currently to be installed,
e.g. "rootfs"

	RAUC_MOUNT_PREFIX

	The global RAUC mount prefix path, e.g. "/run/mount/rauc"

	RAUC_BOOT_PARTITION_ACTIVATING

	The to be activated boot partition (0 or 1).
boot-mbr-switch, boot-gpt-switch, boot-emmc slot types only.

	RAUC_BOOT_PARTITION_START

	The absolute partition offset of the to be activated boot partition in
bytes.
boot-mbr-switch and boot-gpt-switch slot types only.

	RAUC_BOOT_PARTITION_SIZE

	The partition size of the to be activated boot partition in bytes.
boot-mbr-switch and boot-gpt-switch slot types only.

10.8. D-Bus API

RAUC provides a D-Bus API that allows other applications to easily communicate
with RAUC for installing new firmware.

de.pengutronix.rauc.Installer

10.8.1. Methods

InstallBundle (IN s source, IN a{sv} args);

Install (IN s source); (deprecated)

Info (IN s bundle, s compatible, s version);

Mark (IN s state, IN s slot_identifier, s slot_name, s message);

GetSlotStatus (a(sa{sv}) slot_status_array);

GetPrimary s primary);

10.8.2. Signals

Completed (i result);

10.8.3. Properties

Operation readable s

LastError readable s

Progress readable (isi)

Compatible readable s

Variant readable s

BootSlot readable s

10.8.4. Description

10.8.5. Method Details

10.8.5.1. The InstallBundle() Method

de.pengutronix.rauc.Installer.InstallBundle()
Install (IN s source, IN a{sv} args);

Triggers the installation of a bundle.
This method call is non-blocking.
After completion, the “Completed” signal will be emitted.

	IN s source:

	Path to bundle to be installed

	IN a{sv} args:

	Arguments to pass to installation

Currently supported:

	STRING ‘ignore-compatible’, VARIANT ‘b’ <true/false>

	Ignore the default compatible check for forcing
installation of bundles on platforms that a compatible not matching the one
of the bundle to be installed

	STRING ‘tls-cert’, VARIANT ‘s’ <filename/pkcs11-url>

	Use the provided
certificate for TLS client authentication

	STRING ‘tls-key’, VARIANT ‘s’ <filename/pkcs11-url>

	Use the provided
private key for TLS client authentication

	STRING ‘tls-ca’, VARIANT ‘s’ <filename/pkcs11-url>

	Use the provided
certificate to authenticate the server (instead of the system wide
store)

	STRING ‘http-headers’, VARIANT ‘as’ <array of strings>

	Add the provided
headers to every request (i.e. for bearer tokens)

	STRING ‘tls-no-verify’, VARIANT ‘b’ <true/false>

	Ignore verification
errors for the server certificate

10.8.5.2. The Install() Method

Note

This method is deprecated.

de.pengutronix.rauc.Installer.Install()
Install (IN s source);

Triggers the installation of a bundle.
This method call is non-blocking.
After completion, the “Completed” signal will be emitted.

	IN s source:

	Path to bundle to be installed

10.8.5.3. The Info() Method

de.pengutronix.rauc.Installer.Info()
Info (IN s bundle, s compatible, s version);

Provides bundle info.

	IN s bundle:

	Path to bundle information should be shown

	s compatible:

	Compatible of bundle

	s version:

	Version string of bundle

10.8.5.4. The Mark() Method

de.pengutronix.rauc.Installer.Mark()
Mark (IN s state, IN s slot_identifier, s slot_name, s message);

Keeps a slot bootable (state == “good”), makes it unbootable (state == “bad”)
or explicitly activates it for the next boot (state == “active”).

	IN s state:

	Operation to perform (one out of “good”, “bad” or “active”)

	IN s slot_identifier:

	Can be “booted”, “other” or <SLOT_NAME> (e.g. “rootfs.1”)

	s slot_name:

	Name of the slot which has ultimately been marked

	s message:

	Message describing what has been done successfully
(e.g. “activated slot rootfs.0”)

10.8.5.5. The GetSlotStatus() Method

de.pengutronix.rauc.Installer.GetSlotStatus()
GetSlotStatus (a(sa{sv}) slot_status_array);

Access method to get all slots’ status.

	a(sa{sv}) slot_status_array:

	Array of (slotname, dict) tuples with each dictionary representing the
status of the corresponding slot

10.8.5.6. The GetPrimary() Method

de.pengutronix.rauc.Installer.GetPrimary()
GetPrimary (s primary);

Get the current primary slot.

10.8.6. Signal Details

10.8.6.1. The “Completed” Signal

de.pengutronix.rauc.Installer::Completed
Completed (i result);

This signal is emitted when an installation completed, either
successfully or with an error.

	i result:

	return code (0 for success)

10.8.7. Property Details

10.8.7.1. The “Operation” Property

de.pengutronix.rauc.Installer:Operation
Operation readable s

Represents the current (global) operation RAUC performs.
Possible values are idle or installing.

10.8.7.2. The “LastError” Property

de.pengutronix.rauc.Installer:LastError
LastError readable s

Holds the last message of the last error that occurred.

10.8.7.3. The “Progress” Property

de.pengutronix.rauc.Installer:Progress
Progress readable (isi)

Provides installation progress information in the form

(percentage, message, nesting depth)

Refer Processing Progress Data section.

10.8.7.4. The “Compatible” Property

de.pengutronix.rauc.Installer:Compatible
Compatible readable s

Represents the system’s compatible. This can be used to check for usable bundles.

10.8.7.5. The “Variant” Property

de.pengutronix.rauc.Installer:Variant
Variant readable s

Represents the system’s variant. This can be used to select parts of an bundle.

10.8.7.6. The “BootSlot” Property

de.pengutronix.rauc.Installer:BootSlot
BootSlot readable s

Contains the information RAUC uses to identify the booted slot. It is derived
from the kernel command line.
This can either be the slot name (e.g. rauc.slot=rootfs.0) or the root device
path (e.g. root=PARTUUID=0815). If the root= kernel command line option is
used, the symlink is resolved to the block device (e.g. /dev/mmcblk0p1).

10.9. RAUC’s Basic Update Procedure

Performing an update using the default RAUC mechanism will work as follows:

	Startup, read system configuration

	Determine slot states

	Verify bundle signature (reject if invalid)

	Mount bundle (SquashFS)

	Parse and verify manifest

	Determine target install group

	Execute pre install handler (optional)

	Verify bundle compatible against system compatible (reject if not matching)

	Mark target slots as non-bootable for bootloader

	Iterate over each image specified in the manifest

	Determine update handler (based on image and slot type)

	Try to mount slot and read slot status information

	Skip update if new image hash matches hash of installed one

	Perform slot update (image copy / mkfs+tar extract / …)

	Try to write slot status information

	Mark target slots as new primary boot source for the bootloader

	Execute post install handler (optional)

	Unmount bundle

	Terminate successfully if no error occurred

10.10. Bootloader Interaction

RAUC comes with a generic interface for interacting with the bootloader.
It handles all slots that have a bootname property set.

It provides two base functions:

	Setting state ‘good’ or ‘bad’, reflected by API routine r_boot_set_state()
and command line tool option rauc status mark <good/bad>

	Marking a slot ‘primary’, reflected by API routine r_boot_set_primary()
and command line tool option rauc status mark-active

The default flow of how they will be called during the installation of a new
bundle (on Slot ‘A’) looks as follows:

[image: _images/bootloader-interaction_install.svg]

The aim of setting state ‘bad’ is to disable a slot in a way that the
bootloader will not select it for booting anymore.
As shown above this is either the case before an installation to make the
update atomic from the bootloader’s perspective, or optionally after the
installation and a reboot into the new system, when a service detects that the
system is in an unusable state. This potentially allows falling back to a
working system.

The aim of setting a slot ‘primary’ is to let the bootloader select this slot
upon next reboot in case of having completed the installation successfully.
An alternative to directly marking a slot primary after installation is to
manually mark it primary at a later point in time, e.g. to let a complete set
of devices change their software revision at the same time.

Setting the slot ‘good’ is relevant for the first boot but for all subsequent
boots, too.
In most cases, this interaction with the bootloader is required by the
mechanism that enables fallback capability; rebooting a system one or several times
without calling rauc status mark-good will
let the bootloader boot an alternative system or abort boot operation
(depending on configuration).
Usually, bootloaders implement this fallback mechanism by some kind of counters
they maintain and decrease upon each boot.
In these cases marking good means resetting these counters.

A normal reboot of the system will look as follows:

[image: _images/bootloader-interaction_boot.svg]

Some bootloaders do not require explicitly setting state ‘good’ as they are able
to differentiate between a POR and a watchdog reset, for example.

What the high-level functions described above actually do mainly depends on the underlying
bootloader used and the capabilities it provides.
Below is a short description about behavior of each bootloader interface
currently implemented:

10.10.1. U-Boot

The U-Boot implementation assumes to have variables BOOT_ORDER and
BOOT_x_LEFT handled by the bootloader scripting.

	state bad

	Sets the BOOT_x_LEFT variable of the slot to 0 and removes it from
the BOOT_ORDER list

	state good

	Sets the BOOT_x_LEFT variable back to its default value (3).

	primary

	Moves the slot from its current position in the list in BOOT_ORDER to the
first place and sets BOOT_x_LEFT to its initial value (3).
If BOOT_ORDER was unset before, it generates a new list of all slots known to
RAUC with the one to activate at the first position.

10.10.2. Barebox

The barebox implementation assumes using
barebox bootchooser [https://barebox.org/doc/latest/user/bootchooser.html].

	state bad

	Sets both the bootstate.systemX.priority and
bootstate.systemX.remaining_attempts to 0.

	state good

	Sets the bootstate.systemX.remaining_attempts to its default value
(3).

	primary

	Sets bootstate.systemX.priority to 20 and all other priorities that were
non-zero before to 10.
It also sets bootstate.systemX.remaining_attempts to its initial value (3).

10.10.3. GRUB

	state bad

	Sets slot x_OK to 0 and resets x_TRY to 0.

	state good

	Sets slot x_OK to 1 and resets x_TRY to 0.

	primary

	Sets slot x_OK to 1 and resets x_TRY to 0.
Sets ORDER to contain slot x as first element and all other after.

10.10.4. EFI

	state bad

	Removes the slot from BootOrder

	state good

	Prepends the slot to the BootOrder list.
This behaves slightly different than the other implementations because we use
BootNext for allowing setting primary with an initial fallback option.
Setting state good is then used to persist this.

	primary

	Sets the slot as BootNext by default.
This will make the slot being booted upon next reboot only!

The behavior is different when efi-use-bootnext is set to false.
Then this prepends the slot to the BootOrder list as described for ‘state
good’.

Note

EFI implementations differ in how they handle new or unbootable
targets etc. It may also depend on the actual implementation if EFI variable
writing is atomic or not.
Thus make sure your EFI works as expected and required.

11. Terminology

	Update Controller

	This controls the update process and can be started on demand or run as a daemon.

	Update Handler

	The handler performs the actual update installation.
A default implementation is provided with the update controller and can
be overridden in the update manifest.

	Update Bundle

	The bundle is a single file containing an update. It consists of a squashfs
with an appended cryptographic signature.
It contains the update manifest, one or more images and optionally an
update handler.

	Update Manifest

	This contains information about update compatibility, image hashes and
references the optional handler.
It is either contained in a bundle or downloaded individually over the
network.

	Slot

	Slots are possible targets for (parts of) updates. Usually they are
partitions on a SD/eMMC, UBI volumes on NAND/NOR flash or raw block devices.
For filesystem slots, the controller stores status information in a file
in that filesystem.

	Slot Class

	All slots with the same purpose (such as rootfs, appfs) belong to the same
slot class.
Only one slot per class can be active at runtime.

	Install Group

	If a system consists of more than only the root file system, additional
slots are bound to one of the root file system slots.
They form an install group.
An update can be applied only to members of the same group.

	System Configuration

	This configures the controller and contains compatibility information
and slot definitions.
For now, this file is shipped as part of the root filesystem.

	Boot Chooser

	The bootloader component that determines which slot to boot from.

	Recovery System

	A non-updatable initial (factory default) system, capable of running the
update service to recover the system if all other slots are damaged.

12. Contributing

Thank you for thinking about contributing to RAUC!
Some different backgrounds and use-cases are essential for making RAUC work
well for all users.

The following should help you with submitting your changes, but don’t let these
guidelines keep you from opening a pull request.
If in doubt, we’d prefer to see the code earlier as a work-in-progress PR and
help you with the submission process.

12.1. Workflow

	Changes should be submitted via a GitHub pull request [https://github.com/rauc/rauc/pulls].

	Try to limit each commit to a single conceptual change.

	Add a signed-off-by line to your commits according to the Developer’s
Certificate of Origin (see below).

	Check that the tests still work before submitting the pull request. Also
check the CI’s feedback on the pull request after submission.

	When adding new features, please also add the corresponding
documentation and test code.

	If your change affects backward compatibility, describe the necessary changes
in the commit message and update the examples where needed.

12.2. Code

	Basically follow the Linux kernel coding style

12.3. Documentation

	Use semantic linefeeds [http://rhodesmill.org/brandon/2012/one-sentence-per-line/] in .rst files.

12.4. Check Scripts & Test Suite

To ensure we do not break existing behavior and detect potential bugs, RAUC
runs a test suite consisting of several components.
Some of them only run in CI, but most of them can be executed locally.
When working on a new feature or fixing a bug, please make sure these tests
succeed.

12.4.1. Code Style - uncrustify

To maintain a consistent code style, we use the uncrustify [https://github.com/uncrustify/uncrustify] code beautifier that also runs in
the CI loop.

To make sure your changes match the expected code style, run:

./uncrustify.sh

from the RAUC source code’s root directory.
It will adapt style where necessary.

12.4.2. CLI Tests - sharness

For high-level tests of the RAUC command line interface we use the sharness [https://github.com/chriscool/sharness] shell library.

You can run these checks manually by executing:

cd test
./rauc.t

from the RAUC source code’s root directory but they will also be triggered by
the general test suite run (see below).
If you add or change subcommands or arguments of the CLI tool, make sure these
tests succeed and extend them if possible.
As many of these tests need root permissions, we recommend running them using the
qemu-test helper below.

12.4.3. glib Unit Tests - gtest

For testing the different C modules of RAUC’s source code, we use the glib
Test Framework [https://developer.gnome.org/glib/stable/glib-Testing.html].

All tests reside in the test/ folder and are named according to the module
they test (test/bundle.c contains tests for src/bundle.c).

To build and run an individual test, do:

make test/bundle.test
./test/bundle.test

To run all tests, run:

make check

This will also run the sharness CLI tests mentioned above.

Note

Although some of the tests need to run as root, do NOT use ‘sudo’, but
use our qemu-test helper instead!

12.4.4. QEMU Test Runner - qemu-test

As many of the unit tests require root privileges and thus could potentially
damage your host system, we provide a QEMU-based test environment where one can
safely run all checks in a virtual environment.

To run the entire test suite, type:

./qemu-test

For optimal performance, run:

./qemu-test passthrough

which will pass through your host’s CPU features to the guest.

For interactive access to the test environment, use:

./qemu-test shell

12.5. Developer’s Certificate of Origin

RAUC uses the Developer’s Certificate of Origin 1.1 [https://developercertificate.org/] with the same process [https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin]
as used for the Linux kernel:

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

	The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

	The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

	I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Then you just add a line (using git commit -s) saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

13. Changes in RAUC

13.1. Release 1.7 (development)

Enhancements

	Add support for streaming installation from a HTTP(S) server for verity
bundles.
This avoids the need for a temporary bundle storage location and prepares for
more efficient incremental updates.

Bug fixes

Testing

Code

Documentation

Contributions from:

13.2. Release 1.6 (released Feb 9, 2022)

Enhancements

	Added support for NOR flash devices. (by Ladislav Michl)

	Added support for configuring the number of boot attempts for U-Boot. (by
Daniel Mack)

	Implemented passing the image size to hooks as RAUC_IMAGE_SIZE. (by Marcel
Hellwig)

	Added support to use systemd.verity_root_data= to find the booted slot.
(by Arnaud Rebillout)

	Implemented passing additional information to hooks for the boot-* slot types.
(by Bastian Krause)

	Added support for extracting and replacing the bundle signature, which is
useful for scenarios with strict limitations on how HSMs can be used. (by
Jean-Pierre Geslin)

	Implemented a rauc mount command to allow inspection of bundles without
extraction.

	Allowed omitting the image filename when using the install slot hook.

	Implemented support for extracting tar archives to jffs2 slots. (by Holger Assmann)

	Added option for the resign and info commands to ignore expired
certificates (--no-check-time). (by Michael Heimpold)

	Added option for the convert command to disable the concurrent access
checks for plain bundles (--trust-environment).

	Simplified usage of compressed SquashFS images with extensions as created by
OpenEmbedded. (by Omer Akram)

	Improved checks of the manifest contents to avoid common misconfigurations.

	Improved handling of system.conf loading according to the use-cases of
the different commands.

Bug fixes

	Fixed installing plain bundles from ZFS partitions. (by Daniel Mack)

	Fixed the order of pre-/post-install hooks for the boot-* slot types. (by Bastian Krause)

	Fixed generation of VFAT filesystem labels which were rejected by newer
mkfs.vfat.

	Added checking of slot types configured in system.conf.

	Fixed installing plain bundles from ramfs. (by Ian Abbott)

	Fixed curl download size limit handling. (by Christoph Steiger)

	Fixed missing file descriptor closing in some error cases. (by Christian Hitz)

	Fixed an issue with slot boot status determination that could accidentally
detect ‘good’ slots as ‘bad’.

	Fixed inconsistent slot status reporting via the D-Bus API.

Testing

	Updated kernel used for qemu testing.

	Introduced an interactive mode for qemu-test.

	Moved testing container building to GitHub Actions.

	Updated testing container to Debian bullseye. (by Ludovico de Nitti)

	Added a scan-build workflow.

Code

	Removed some code left over after the removal of the deprecated file support.

	Refactored bundle opening as preparation for HTTP streaming.

	Added infrastructure for HTTP streaming tests.

	Completed D-Bus interface definitions. (by Taras Zaporozhets)

Documentation

	Improved documentation of the boot-mbr/gpt-switch slot types.

	Fixed and improved documentation and comments in several places. (by Alexander
Dahl)

	Documented a common approach to handle UBIFS device names via udev.

	Added a FAQ entry covering the use of dm-crypt partitions. (by Fabian
Büttner)

Contributions from: Ahmad Fatoum, Alexander Dahl, Arnaud Rebillout, Bastian
Krause, Christian Hitz, Christoph Steiger, Daniel Mack, Enrico Jörns, Fabian
Büttner, Holger Assmann, Ian Abbott, Jan Lübbe, Jean-Pierre Geslin, Ladislav
Michl, Livio Bieri, Ludovico de Nittis, Marcel Hellwig, Michael Heimpold,
Michael Tretter, Omer Akram, Pascal Huerst, Richard Forro, Roland Hieber,
Rouven Czerwinski, Sijmen Huizenga, Taras Zaporozhets, Vivien Didelot,
Vyacheslav Yurkov

13.3. Release 1.5.1 (released Jan 22, 2021)

Bug fixes

	Fix building with kernel headers < 4.14. (by Fabrice Fontaine)

	Fix manifest generation for casync bundles.

	Fix too strict payload size check which triggered on casync bundles generated
by versions up to 1.4.

	Restore compatibility with glib 2.50.

Testing

	Switch from Travis-CI to GitHub actions.

	Add test builds on Ubuntu 16.04, 18.04 and 20.04 to catch build problems with
older environments.

Contributions from: Enrico Jörns, Fabrice Fontaine, Jan Lübbe

13.4. Release 1.5 (released Dec 14, 2020)

Note

This version introduces the new verity bundle format (the old format is
now called plain).
The verity format was added to prepare for future use cases (such as
network streaming and encryption), for better parallelization of installation
with hash verification and to detect modification of the bundle during
installation (CVE-2020-25860).
The bundle format is detected when reading a bundle and checked against the set
of allowed formats configured in the system.conf (see Bundle Formats).

As the old plain format does not offer protection against modification
during the installation process, RAUC now takes ownership of the bundle file,
removes write permissions and checks for existing open file descriptors.
This is intended as a mitigation to protect against a compromised update
service running as a non-root user, which would otherwise be able to modify
the bundle between signature check and actual bundle installation.

See Bundle Format Migration for more details on how to switch to the
verity format.

Enhancements

	Add support for the verity bundle format. See the reference for
details.

	Support resolving the root=PARTLABEL=xxx kernel command line option. (by
Gaël PORTAY)

	Disable the unnecessary SMIMECapabilities information in the bundle
signature, saving ~100 bytes.

	Remove redundant checksum verification for source images during installation.
The RAUC bundle is already verified at this point, so there is no need to
verify the checksum of each file individually. (by Bastian Krause)

Security

	Take ownership of bundle files if they are not owned by root and remove write
permissions. Then check that no writable file descriptors are open for the
bundle file (using the F_SETLEASE fcntl). This fixes CVE-2020-25860. See
the advisory for more details:
https://github.com/rauc/rauc/security/advisories/GHSA-cgf3-h62j-w9vv

Note

The https://github.com/rauc/rauc-1.5-integration repository contains examples
to simplify integrating the RAUC update into existing projects.
You can subscribe to https://github.com/rauc/rauc-1.5-integration/issues/1 to
receive notifications of important updates to this repository and of
integration into the upstream build systems.

Bug fixes

	Fix install handler selection for .img files for boot- slots when used with
casync. (by Martin Schwan)

	Fix checking for unknown keys in the slot configuration.

	Fix some corner cases related to stopping the D-Bus daemon.

	Propagate error if unable to save manifest. (by Stefan Wahren)

	Apply –handler-args only during installation (and not during bundle
creation).

Testing

	Ship test/minimal-test.conf to fix testing when running as root. (by Uwe
Kleine-König)

	Increase usage of g_autofree/g_autoptr in the test suite.

Code

	Remove unused code for signed manifests (outside of a bundle).

	Add G_GNUC_WARN_UNUSED_RESULT to many functions.

Documentation

	Fix multiple smaller errors. (by Christoph Steiger, Christopher Obbard and
Michael Heimpold)

	Improve documentation related to u-boot scripting and environment storage.

Contributions from: Bastian Krause, Christoph Steiger, Christopher Obbard,
Enrico Jörns, Gaël PORTAY, Jan Lübbe, Martin Schwan, Michael Heimpold, Stefan
Wahren, Uwe Kleine-König

13.5. Release 1.4 (released Jul 20, 2020)

Note

Slots with both a parent= and a bootname= entry are now rejected when
parsing the system configuration.
While the intention was to have either a bootname or a parent link, this was
not enforced in previous versions.
Move the bootname to the parent slot when updating to RAUC 1.4.

It is now recommended to explicitly select either per-slot or global
configuration file in the system config using statusfile=<path>/per-slot.
If a central storage location is available, global status file should be
preferred.

Enhancements

	Added support for custom boot selection scripts/binaries.
This allows handling special cases where none of the standard bootloaders
is available for switching the redundant slots. (by Christian Bräuner
Sørensen, docs by Andreas Schmidt)

	Changed ext4 filesystem creation options to always use 256 byte inodes.
Without it, mkfs.ext4 will default to 128 byte inodes on filesystems smaller
than 512MiB.
This avoids the “ext4 filesystem being mounted at /foo supports timestamps
until 2038” message on newer kernels.

	Added new slot type boot-gpt-switch to support atomic updating of boot
partitions in the GPT.
This is useful if the firmware does not support atomic bootloader updates by
itself.
See here for details.

Bug fixes

	Improve parent and bootname consistency checks when loading the system
config. (by Dan Callaghan)

	Fix and improve installation log output for the –disable-service
configuration.

	Clean up incomplete bundles on creation errors consistently for extract/resign/convert
and doesn’t remove pre-existing files anymore.

	Fix minor memory leaks.

Testing

	Added tests for UBIFS and NAND slot types via nandsim in qemu.

	Added CI testing of the –disable-service configure option.

	Added test cases for some CLI subcommands.

Code

	Clarified licensing of the D-Bus API file. (by Michael Heimpold)

Documentation

	Manual pages have been updated with new options. (by Michael Heimpold)

	Improved documentation around central and per-slot status files.

	Improved images and various text sections.

Contributions from: Andreas Schmidt, Bastian Krause, Christian Bräuner
Sørensen, Dan Callaghan, Enrico Jörns, Jan Lübbe, Michael Heimpold, Tobias
Junghans, Uwe Kleine-König

13.6. Release 1.3 (released Apr 23, 2020)

Enhancements

	Added a new D-Bus method (InstallBundle) which supports optional parameters
(“ignore-compatible” for now).

	Added support for X.509 key usage attributes (code signing and others).

	Added a check-crl configuration option to require Certificate Revocation
List (CRL) checking during installation.
If the keyring already contains a CRL, but checking is not enabled, a warning
will be printed.

	Support updating of already mounted slots via a custom install hook when
enabled with “allow-mounted=true” in the system configuration.
This can be useful for updating bootloaders in a boot partition (for example
on the Raspberry Pi or BeagleBone). (by Martin Hundebøll and Rasmus Villemoes)

	Added the --mksquashfs-args option for bundle creation. This can be used to
configure the details of the squashfs compression. (by Louis des Landes)

	Added the --casync-args option for the rauc convert command. This can
be used to configure the details of the casync conversion. (by Christopher
Obbard)

	Added support for installing UBIFS images via casync (depends on the casync PR
https://github.com/systemd/casync/pull/227). (by Ulrich Ölmann)

	Enabled usage of --no-verify with rauc resign.
This can be useful for resigning of bundles signed with expired certificates.

	Exposed the RAUC_BUNDLE_MOUNT_POINT environment variable to hook scripts.
This also deprecates the old name RAUC_UPDATE_SOURCE for this value in
handler scripts. (by Rasmus Villemoes)

	Reduced size of the installed rauc binary. This was done by using
--gc-sections and adding a configure switch to disable the bundle,
resign and convert commands. (by Rasmus Villemoes)

	Added support for explicitly telling RAUC that all slots are inactive on the
kernel command line (rauc.external).
This is useful for using RAUC in a factory installer. (by Marco Felsch)

	Improved layout of the rauc status output.

Bug fixes

	Fixed SD/eMMC detection when using /dev/disk/by-path/ symlinks. (by Marco Felsch)

	Fixed handling of HTTP Content-Encoding: gzip. (by Jan Kundrát)

	Fixed reporting of errors during bundle verification. This solves a
rauc-ERROR **: Not enough substeps: check_bundle abort. (by Rouven
Czerwinski)

	Fixed handling of surrounding whitespace in the system variant by removing
it. A warning is printed in this case.

	Fixed the RAUC D-Bus interface introspection file name to be consistent with
the interface name. (by Michael Tretter)

Testing

	Switched testing environment from user-mode-linux (UML) to QEMU. This allows
us to use our own kernel configuration and avoids the (unusual) dependency.

	Re-enabled support for coverity, as they have added support for GCC 8.

	Added some more tests in several areas.

Code

	Removed support for OpenSSL versions < 1.1.1.
OpenSSL versions 1.0.2 and 1.1.0 are no longer supported by the OpenSSL
project: https://www.openssl.org/policies/releasestrat.html

	Improved support for large bundles on 32 bit systems, but some work remains
to be done.

	Disabled automatic -Werror and -O0 when building from a git
repository.
This caused confusion in several cases.

	Updated uncrustify and enabled some additional formatting rules.

	Reduced redundant prefixes in error messages.

	Removed unused verification functions left over from the old network mode.

	Removed minor memory leaks.

Documentation

	Clarified documentation about hooks and handlers (and the available
environment variables).

	Fixed minor typos and inconsistencies.

Contributions from: Arnaud Rebillout, Christopher Obbard, Enrico Jörns, Jan
Kundrát, Jan Lübbe, Louis des Landes, Marco Felsch, Martin Hundebøll, Michael
Heimpold, Michael Tretter, Rasmus Villemoes, Rouven Czerwinski, Trent Piepho,
Ulrich Ölmann

13.7. Release 1.2 (released Oct 27, 2019)

Enhancements

	Added --signing-keyring argument to specify a distinct keyring for
post-signing verification. This allows for example to use rauc resign
with certs not verifying against the original keyring.

	Output of ‘rauc status’ is now grouped by slot groups to make it easier to
identify the redundancy setup.
Previously, the present slots were printed in a random order which was
confusing, especially when having more than three or four slots.

	Use pkg-config to obtain valid D-Bus install directories and clean up D-Bus
directory handling.
This adds libdbus-1-dev as new build dependency. (by Michael Heimpold)

	Moved various checks that could be performed before actually starting the
installation out of the atomic update region.
This allows RAUC to fail earlier without leaving behind a disabled slot group
with incomplete contents.

	Added optional --progress argument to rauc install that enables a
basic text progress bar instead of the default line-by-line log.

	Added tmppath to casync system config options to allow setting TMPDIR for
casync. (by Gaël PORTAY)

	Slot skipping was deactivated by default as it turned out to be unexpected
behaviour for many users.
The corresponding setting was renamed to ‘install-same=’
(‘force-install-same’ will remain valid, too).
The means skipping writing for slots whose current and intended slot hashes
are equal must now be enabled explicitly.
This optimization is mainly useful for use-cases with a read-only rootfs.

	Added new slot type boot-mbr-switch to support atomic updating of boot
partitions in the MBR. (by Thomas Hämmerle)
See here for details.

Bug fixes

	Fixed detection of whether the bundle path is located in input directory for a
corner case.

	Fixed off-by-one error in printing the remaining attempts counter in the
uboot.sh contrib script (by Ellie Reeves)

	Fixed detection of mount points disappearing during the service’s runtime.

	Added missing entry of ‘service’ subcommand to RAUC help text (if compiled
with service support).

	Fixed inappropriate resetting of BOOT_ACK flag in eMMC extCSD register
handling which could have prevented proper booting on some SoCs. (by Stephan
Michaelsen)

	Fixed leaking GDataInputStreams in boot selection and install handling that
led to steadily increasing number of open file descriptors in some scenarios
until exceeding system limits and leading to ‘Too many open files’ errors.
This was only problematic when installing many times without rebooting.

	Fixed ‘uninitialized local’ bugs in update_handler and config_file module.
(by Gaël PORTAY)

	PKCS#11 handling now does not silently accept missing (empty) PINs anymore,
but allows interactive prompt for entering it.

	Fixed bundle detection on big endian systems.

	Fixed size mismatches in printf formatter and struct packing on ARM32.

Testing

	Fix checks that depended on implicit assumptions regarding the GHashTable
behaviour that are not valid anymore for newer glib versions.

	Added notes on required tools for unit testing and added check for
grub-editenv being present.

	Travis now also runs cross-compilation tests for platforms armhf, i386,
arm64, armel to allow early detection of cross-compilation issues with
endianness, 32 vs. 64 bit, etc.

Code

	Reworked subprocess call logging for debugging and added remaining missing
log output to users of r_subprocess_new().

	Refactored slot handling code in new ‘slot.c’ module to be used for both
install and status information handling.

	Added qdbusxml2cpp annotations to rauc-installer.xml for interface class
generation. (by Tobias Junghans)

	Removed the deprecated ‘network mode’.
Note that this does not affect RAUC’s bundle network capabilities (casync,
etc.).

	Fixed clang compilation warnings (unused variable, printf formatter,
non-obvious invert statements).

	Various code cleanups, structural simplifications

Documentation

	Added hints for creating /dev/data symlink to mount the right data
partition in dual data partition setups. (by Fabian Knapp)

	Extended manpage to cover ‘rauc status’ subcommands. (by Michael Heimpold)

	Fixed various typos.

Contributions from: Bastian Krause, Ellie Reeves, Enrico Jörns, Fabian Knapp,
Gaël PORTAY, Jan Lübbe, Leif Middelschulte, Michael Heimpold , Stephan
Michaelsen , Thomas Hämmerle, Thorsten Scherer, Tobias Junghans, Uwe
Kleine-König

13.8. Release 1.1 (released Jun 5, 2019)

Enhancements

	Check that we do not generate a bundle inside a source directory

	Added full GRUB2 support, including status and primary slot readback (by
Vitaly Ogoltsov and Beralt Meppelink)

	Allow passing a slot’s name via commandline instead of it’s bootname

	Show each slot’s name in Booted from line of rauc status to simplify
identification

	Add resize option for ext4 slots to let RAUC run resize2fs on an ext4
slot after copying the image.

	Allow dumping the signer certificate (--dump-cert) without verification

	Allow specifying a keyring directory with multiple files to support
non-conflicting installations of certificates from different packages (by
Evan Edstrom)

	Add a bootloader option efi-use-bootnext (only valid when bootloader is
‘efi’) to disable usage of BootNext for marking slots primary.

	Support setting a system variant in the system-info handler via
RAUC_SYSTEM_VARIANT

	D-Bus “mountpoint” property now also exports external mount point

	Made slot state, compatible and variant available as environment variables
for slot hooks

	Made system variant variable available as an environment variable for bundle
hooks

Bug fixes

	Fix memory leaks in D-Bus notification callbacks (by Michael Heimpold)

	Fix memory leaks in resolve_bundle_path (by Michael Heimpold)

	Do not print misleading status dump when calling mark-* subcommands

	Avoid mmap’ing potentially huge files (by Rasmus Villemoes)

	Fix and cleanup checksum verification and handling (by Rasmus Villemoes)

	Avoid assertion error caused by unconditional slot status hash table freeing

	Make a-month-from-now validity check in signature verification more robust
(by Rasmus Villemoes)

Testing

	Enable lgtm analysis for tests

	Restructure signature tests with set_up and tear_down (by Evan Edstrom)

	Move from gcc-6 to gcc-7

	Build environment fixes and workarounds

Code

	A failure in calling barebox_state bootchooser implementation should be
propagated

	Update to latest git-version-gen upstream version

	Tail-call real rauc suprocess in rauc-service.sh (by Angus Lees)

	Consistently return newly-allocated objects in resolve_path()

	Enforce space between if and (via uncrustify

Documentation

	Added an initial version of a man page (by Michael Heimpold)

	Extended D-Bus API documentation

	Improve description of how RAUC detects the booted slot

	Added lgtm badge

	Add hints on library dependencies

	Clarifications on how to build and install RAUC

	Add note on basic RAUC buildroot support

	Clarification on usage of RAUC on host and target side

	Clarified documentation of ‘use-bundle-signing-time’ option (by Michael Heimpold)

	Typos fixed

Contributions from: Angus Lees, Arnaud Rebillout, Beralt Meppelink, Enrico
Jörns, Evan Edstrom, Ian Abbott, Jan Lübbe, Michael Heimpold, Rasmus Villemoes,
Ulrich Ölmann, Vitaly Ogoltsov

13.9. Release 1.0 (released Dec 20, 2018)

Enhancements

	Support OpenSSL 1.1

	Use OPENSSL_config() instead of OPENSSL_no_config()

	Handle curl_global_init() return code

Bug fixes

	Fix error handling when resolving the backing file for a loop device

	Fix error reporting when no primary slot is found with u-boot (by Matthias Bolte)

	Fix memory leaks when parsing handler output

	Fix compiler error when building with –disable-network

	Handle fatal errors during curl or openssl initialization

	Fix boot selection handling for asymmetric update setups

	Fix default variant string in case of failure when obtaining

	Fix return codes when giving excess arguments to CLI functions

	Let ‘rauc service’ return exit code != 0 in case of failure

	Print ‘rauc service’ user error output with g_printerr()

	Fix showing primary slot (obtained via D-Bus) in ‘rauc status’

	Fix showing inverted boot-status (obtained via D-Bus) in ‘rauc status’

	Minor output and error handling fixes and enhancements

Testing

	Fake entropy in uml tests to fix and speed up testing

	Fix creating and submitting coverity report data

	Migrate to using Docker images for testing

	Changed coverage service from coveralls to codecov.io

	Switch to uncrustify 0.68.1

Documentation

	Provided slot configuration examples for
common scenarios

	Fixes and enhancements of README.rst to match current state

	Add sphinx DTS lexer for fixing and improving dts example code parsing

Contributions from: Ahmad Fatoum, Enrico Jörns, Jan Lübbe, Matthias Bolte

13.10. Release 1.0-rc1 (released Oct 12, 2018)

Enhancements

	Bundle creation

	Add support for passing Keys/Certificates stored on PKCS#11 tokens (e.g. for using a smart card or HSM).
See PKCS#11 Support for details.

	Print a warning during signing if a certificate in the chain will expire within one month

	If keyring is given during bundle creation, automatically verify bundle signature and trust chain

	Configuration
(see the reference for the [system], [keyring] and [slot.*.*] sections for details)

	Add extra-mount-opts argument to slot config to allow passing custom options
to mount calls (such as user_xattr or seclabel)

	Implement support for readonly slots that are part of the slot description but
should never be written by RAUC

	Add option use-bundle-signing-time to use signing time for verification instead
of the current time

	Introduce max-bundle-download-size config setting (by Michael Heimpold)

	Rename confusing ignore-checksum flag to force-install-same (old remains
valid of course) (by Jan Remmet)

	Add strict parsing of config files as we do for manifests already.
This will reject configs with invalid keys, groups, etc. to prevent unintentional behavior

	Installation

	Remove strict requirement of using .raucb file extension, although it is still recommended

	Export RAUC slot type to handlers and hooks (by Rasmus Villemoes)

	Add *.squashfs to raw slot handling (by Emmanuel Roullit)

	Add checking of RAUC bundle identifier (squashfs identifier)

	*.img files can now be installed to ext4, ubifs or vfat slots (by Michael Heimpold)

	Warn if downloaded bundle could not be deleted

	Expose system information (variant, compatible, booted slot) over D-Bus (by Jan Remmet)

	The rauc status command line call now only uses the D-Bus API (when enabled) to obtain
status information instead of loading configuration and performing operations itself.
This finalizes the clear separations between client and service and also allows calling
the command line client without requiring any configuration.

	Add debug log domain rauc-subprocess for printing RAUC subprocess invocations.
This can be activated by setting the environment variable G_MESSAGES_DEBUG=rauc-subprocess.
See Debugging RAUC for details.

	Enhancement of many debug and error messages to be more precise and helpful

	Let U-Boot boot selection handler remove slot from BOOT_ORDER when marking it bad

	Implemented obtaining state and primary information for U-Boot boot selection interface (by Timothy Lee)

	Also show certificate validity times when the certificate chain is displayed

	Added a simple CGI as an example on how to code against the D-Bus API in RAUC contrib/ folder. (by Bastian Stender)

Bug fixes

	Bootchooser EFI handler error messages and segfault fixed (by Arnaud Rebillout)

	Fix preserving of primary errors while printing follow-up errors in update_handlers (by Rasmus Villemoes)

	Make not finding (all) appropriate target slots a fatal error again

	Prevent non-installation operations from touching the installation progress information (by Bastian Stender)

	Call fsync() when writing raw images to assure content is fully written to disk before exiting (by Jim Brennan)

	Fix casync store initialization for extraction without seeds (by Arnaud Rebillout)

	Fix slot status path generation for external mounts (by Vyacheslav Yurkov)

	Do not try to mount already mounted slots when loading slot status information from per-slot file

	Fix invalid return value in case of failed mark_active()

	Fix bootname detection for missing root= command line parameter

	Fix passing intermediate certificates via command line which got broken by a faulty input check (by Marcel Hamer)

	Preserve original uid/gid during extraction to be independent of the running system.
This was only problematic if the name to ID mapping changed with an update.
Note that this requires to enable CONFIG_FEATURE_TAR_LONG_OPTIONS when using busybox tar.

	Block device paths are now opened with O_EXCL to ensure exclusive access

	Fix handling for file:// URIs

	Build-fix workaround for ancient (< 3.4) kernels (by Yann E. MORIN)

	Various internal error handling fixes (by Ulrich Ölmann, Bastian Stender)

	Several memory leak fixes

Testing

	Abort on g_critical() to detect issues early

	Extended and restructured testing for barebox and u-boot boot selection handling

	Basic rauc convert (casync) testing

	Switch to Travis xenial environment

	Make diffs created by uncrustify fatal to enforce coding style

	Fix hanging rauc.t in case of failed tests for fixing sharness cleanup function handling

	Run sharness (rauc.t) tests with verbose output

	Show make-check log on error

Code

	Add GError handling to download functions

	Prepare support for tracing log level

	Start more detailed annotation of function parameter direction and transfer

	Simplified return handling as result of cleanup helper rework

	Treewide introduction of Glib automatic cleanup helpers. Increases minimum required GLib version to 2.45.8 (by Philipp Zabel)

	Prepare deprecation of RAUC ancient non-bundle ‘network mode’

Documentation

	Add a Debugging RAUC chapter on how to debug RAUC

	Add a Bootloader Interaction section describing the boot selection layer and the special handling for the supported bootloaders

	Add hint on how to run RAUC without D-Bus to FAQ

	Document Required Host Tools and Required Target Tools

	Tons of typo fixes, minor enhancements, clarifications, example fixes, etc.

Contributions from: Alexander Dahl, Arnaud Rebillout, Bastian Stender, Emmanuel Roullit, Enrico Jörns, Jan Lübbe, Jan Remmet, Jim Brennan, Marcel Hamer, Michael Heimpold, Philip Downer, Philipp Zabel, Rasmus Villemoes, Thomas Petazzoni, Timothy Lee, Ulrich Ölmann, Vyacheslav Yurkov, Yann E. MORIN

13.11. Release 0.4 (released Apr 9, 2018)

Enhancements

	Add barebox-statename key to [system] section of system.conf in order
to allow using non-default names for barebox state

	Support atomic bootloader updates for eMMCs.
The newly introduced slot type boot-emmc will tell RAUC to handle
bootloader updates on eMMC by using the mmcblkXboot0/-boot1 partitions
and the EXT_CSD registers for alternating updates.

	Support writing *.vfat images to vfat slots

	Add basic support for streaming bundles using casync tool.
Using the casync tool allows streaming bundle updates chunk-wise over
http/https/sftp etc.
By using the source slot as a seed for the reproducible casync chunking
algorithm, the actual chunks to download get reduced to only those that
differ from the original system.

	Add rauc convert command to convert conventional bundles to casync
bundle and chunk store

	Extend update handler to handle .caibx and .caidx suffix image types in
bundle

	Added --detailed argument to rauc status to obtain newly added slot
status information

	Added D-Bus Methods GetSlotStatus to obtain collected status of all slots

	Extended information stored in slot status files (installed bundle info,
installation and activation timestamps and counters)

	Optionally use a central status file located in a storage location not
touched during RAUC updates instead of per-slot files (enabled by setting
statusfile key in [system] section of system.conf).

	Add write-slot command to write images directly to defined slots (for use
during development)

Bug fixes

	Fix documentation out-of-tree builds

	Fixed packaging for dbus wrapper script rauc-service.sh

	Some double-free and error handling fixes

Testing

	Create uncrustify report during Travis run

Code

	Unified hash table iteration and variable usage

	Add uncrustify code style configuration checker script to gain consistent
coding style. Committed changes revealed by initial run.

Documentation

	Updated and extended D-Bus interface documentation

	Added documentation for newly added features (casync, central slot status,
etc.)

	Fixed and extended Yocto (meta-rauc) integration documentation

	Add link to IRC/Matrix channel

	Some minor spelling errors fixed

13.12. Release 0.3 (released Feb 1, 2018)

Enhancements

	Added support for intermediate certificates, improved bundle resigning and
certificate information for hooks.
This makes it easier to use a multi-level PKI with separate intermediate
certificates for development and releases.
See Resigning Bundles for details.

	Added support for image variants, which allow creating a single bundle which
supports multiple hardware variants by selecting the matching image from a
set contained in the bundle.
See Handling Board Variants With a Single Bundle for details.

	Added support for redundant booting by using EFI boot entries directly.
See EFI for details.

	Added boot information to rauc status

	Added rauc extract command to extract bundles

	Support detection of the booted slot by using the UUID= and PARTUUID=
kernel options.

	Improved the status and error output

	Improved internal error cause propagation

Bug fixes

	Fixed boot slot detection for root=<symlink> boot parameters (such as
root=/dev/disk/by-path/pci-0000:00:17.0-ata-1-part1)

	Removed redundant image checksum verification during installation.

Testing

	Improve robustness and test coverage

	Use gcc-7 for testing

Documentation

	Added documentation for

	intermediate certificates

	re-signing bundles

	image variants

	UEFI support

	Minor fixes and clarifications

13.13. Release 0.2 (released Nov 7, 2017)

Enhancements

	Added --override-boot-slot argument to force booted slot

	Display installation progress and error cause in CLI

	Allow installing uncompressed tar balls

	Error reporting for network handling and fail on HTTP errors

	Added --keyring command line argument

	Added activate-installed key and handling for system.conf that allows
installing updates without immediately switching boot partitions.

	Extended rauc status mark-{good,bad} with an optional slot identifier
argument

	Added subcommand rauc status mark-active to explicitly activate slots

	New D-Bus method mark introduced that allows slot activation via D-Bus

	Added tar archive update handler for vfat slots

	Introduced rauc resign command that allows to exchange RAUC signature
without modifying bundle content

	Display signature verification trust chain in output of rauc info.
Also generate and display SPKI hash for each certificate

	Added --dump-cert argument to rauc info to allow displaying signer
certificate info

Documentation

	Added docs/, CHANGES and README to tarball

	Added and reworked a bunch of documentation chapters

	Help text for rauc bundle fixed

	Added short summary for command help

Bug fixes

	Flush D-Bus interface to not drop property updates

	Set proper PATH when starting service on non-systemd systems

	Include config.h on top of each file to fix largefile support and more

	Let CLI properly fail on excess arguments provided

	Do not disable bundle checking for rauc info --no-verify

	Properly clean up mount points after failures

	Abort on inconsistent slot parent configuration

	Misc memory leak fixes

	Fixes in error handling and debug printout

	Some code cleanups

Testing

	Miscellaneous cleanups, fixes and refactoring

	Add tests for installation via D-Bus

	Let Travis build documentation with treating warnings as errors

	Allow skipping sharness tests requiring service enabled

	Explicitly install dbus-x11 package to fix Travis builds

	Fix coveralls builds by using --upgrade during
pip install cpp-coveralls

	Use gcc-6 for testing

13.14. Release 0.1.1 (released May 11, 2017)

Enhancements

	systemd service: allow systemd to manage and cleanup RAUCs mount directory

Documentation

	Added contribution guideline

	Added CHANGES file

	Converted README.md to README.rst

	Added RAUC logo

	Several typos fixed

	Updated documentation for mainline PTXdist recipes

Bug fixes

	Fix signature verification with OpenSSL 1.1.x by adding missing binary flag

	Fix typo in json status output formatter (“mountpint” -> “mountpoint”)

	Fixed packaging of systemd service files by removing generated service files
from distribution

	src/context: initialize datainstream to NULL

	Added missing git-version-gen script to automake distribution which made
autoreconf runs on release packages fail

	Fixed D-Bus activation of RAUC service for non-systemd systems

13.15. Release 0.1 (released Feb 24, 2017)

This is the initial release of RAUC.

Index

 B
 | I
 | R
 | S
 | U

B

 	
 	Boot Chooser

I

 	
 	Install Group

R

 	
 	Recovery System

S

 	
 	Slot

 	
 	Slot Class

 	System Configuration

U

 	
 	Update Bundle

 	Update Controller

 	
 	Update Handler

 	Update Manifest

 _static/up.png

_images/buildroot_logo.png

nav.xhtml

 Table of Contents

 		
 Welcome to the RAUC documentation!

 		
 Updating your Embedded Device

 		
 Redundancy and Atomicity

 		
 Storage Type and Size

 		
 Security

 		
 Interfacing with your Bootloader

 		
 Update Source and Provisioning

 		
 RAUC Basics

 		
 Update Artifacts – Bundles

 		
 RAUC’s System View

 		
 Slots

 		
 Target Slot Selection

 		
 Slot Status and Skipping Slot Updates

 		
 Boot Slot Selection

 		
 Installation and Storage Handling

 		
 Boot Confirmation & Fallback

 		
 HTTP Streaming

 		
 Using RAUC

 		
 Creating Bundles

 		
 Obtaining Bundle Information

 		
 Installing Bundles

 		
 Viewing the System Status

 		
 React to a Successfully Booted System/Failed Boot

 		
 Manually Switch to a Different Slot

 		
 Customizing the Update

 		
 System Configuration Parameters

 		
 System-Based Customization: Handlers

 		
 Bundle-Based Customization: Hooks

 		
 Full Custom Update

 		
 Using the D-Bus API

 		
 Installing a Bundle

 		
 Processing Progress Data

 		
 Examples Using busctl Command

 		
 Debugging RAUC

 		
 Inspecting Bundle Contents

 		
 Increasing Debug Verbosity

 		
 Reproducing Issues using QEMU Test Setup

 		
 Examples

 		
 Full System Example

 		
 PKI Setup

 		
 RAUC Configuration

 		
 GRUB Configuration

 		
 Bundle Generation

 		
 Update Installation

 		
 Write Slots Without Update Mechanics

 		
 Example Slot Configurations

 		
 Symmetric A/B Setup

 		
 Asymmetric A/Recovery Setup

 		
 Separate Application Partition

 		
 Atomic Bootloader Updates (eMMC)

 		
 Symmetric A/B Setup + Recovery

 		
 Example BSPs

 		
 Scenarios

 		
 Symmetric Root-FS Slots

 		
 Asymmetric Slots

 		
 Multiple Slots

 		
 Additional Rescue Slot

 		
 Integration

 		
 RAUC System Configuration

 		
 Slot Configuration

 		
 Library Dependencies

 		
 Kernel Configuration

 		
 Required Host Tools

 		
 Required Target Tools

 		
 Interfacing with the Bootloader

 		
 Booted Slot Detection

 		
 Barebox

 		
 U-Boot

 		
 GRUB

 		
 EFI

 		
 Custom

 		
 Init System and Service Startup

 		
 Systemd Integration

 		
 D-Bus Integration

 		
 Watchdog Configuration

 		
 Yocto

 		
 Target System Setup

 		
 Using RAUC on the Host System

 		
 Bundle Generation

 		
 PTXdist

 		
 Integration into Your RootFS Build

 		
 Create Update Bundles from your RootFS

 		
 Buildroot

 		
 Bundle Format Migration

 		
 Advanced Topics

 		
 Security

 		
 CA Configuration

 		
 Single Key

 		
 Simple CA

 		
 Separate Development and Release CAs

 		
 Intermediate Certificates

 		
 Resigning Bundles

 		
 PKCS#11 Support

 		
 Protection Against Concurrent Bundle Modification

 		
 HTTP Streaming

 		
 Authentication

 		
 Performance

 		
 Data Storage and Migration

 		
 Storing Data in The Root File System

 		
 Using Data Partitions

 		
 Application Data Migration

 		
 RAUC casync Support

 		
 Creating casync Bundles

 		
 Installing casync Bundles

 		
 Handling Board Variants With a Single Bundle

 		
 Manually Writing Images to Slots

 		
 Updating the Bootloader

 		
 Update eMMC Boot Partitions

 		
 Update Boot Partition in MBR

 		
 Update Boot Partition in GPT

 		
 Bootloader Update Ideas

 		
 Considerations When Updating the Bootloader

 		
 Updating Sub-Devices

 		
 Migrating to an Updated Bundle Version

 		
 Software Deployment

 		
 Deployment via Storage Media

 		
 Deployment via Deployment Server

 		
 Design Checklist

 		
 General

 		
 Slot Layout

 		
 Recovery Mechanism

 		
 If Using a HW Watchdog for Error Detection

 		
 If Not Using a HW Watchdog for Error Detection

 		
 Security

 		
 Data Migration

 		
 Frequently Asked Questions

 		
 Why doesn’t the installed system use the whole partition?

 		
 Is it possible to use RAUC without D-Bus (Client/Server mode)?

 		
 Why does RAUC not have an ext2 / ext3 file type?

 		
 Is the RAUC bundle format forwards/backwards compatible?

 		
 Can I use RAUC with a dm-verity-protected partition?

 		
 Can I use RAUC with a dm-crypt-protected partition?

 		
 What causes a payload size that is not a multiple of 4kiB?

 		
 How can I refer to devices if the numbering is not fixed?

 		
 Reference

 		
 System Configuration File

 		
 Manifest

 		
 Bundle Formats

 		
 plain Format

 		
 verity Format

 		
 External Signing and PKI

 		
 Slot Status

 		
 Command Line Tool

 		
 Custom Handlers (Interface)

 		
 Hooks (Interface)

 		
 Install Hooks Interface

 		
 Slot Hooks Interface

 		
 D-Bus API

 		
 Methods

 		
 Signals

 		
 Properties

 		
 Description

 		
 Method Details

 		
 Signal Details

 		
 Property Details

 		
 RAUC’s Basic Update Procedure

 		
 Bootloader Interaction

 		
 U-Boot

 		
 Barebox

 		
 GRUB

 		
 EFI

 		
 Terminology

 		
 Contributing

 		
 Workflow

 		
 Code

 		
 Documentation

 		
 Check Scripts & Test Suite

 		
 Code Style - uncrustify

 		
 CLI Tests - sharness

 		
 glib Unit Tests - gtest

 		
 QEMU Test Runner - qemu-test

 		
 Developer’s Certificate of Origin

 		
 Changes in RAUC

 		
 Release 1.7 (development)

 		
 Release 1.6 (released Feb 9, 2022)

 		
 Release 1.5.1 (released Jan 22, 2021)

 		
 Release 1.5 (released Dec 14, 2020)

 		
 Release 1.4 (released Jul 20, 2020)

 		
 Release 1.3 (released Apr 23, 2020)

 		
 Release 1.2 (released Oct 27, 2019)

 		
 Release 1.1 (released Jun 5, 2019)

 		
 Release 1.0 (released Dec 20, 2018)

 		
 Release 1.0-rc1 (released Oct 12, 2018)

 		
 Release 0.4 (released Apr 9, 2018)

 		
 Release 0.3 (released Feb 1, 2018)

 		
 Release 0.2 (released Nov 7, 2017)

 		
 Release 0.1.1 (released May 11, 2017)

 		
 Release 0.1 (released Feb 24, 2017)

_images/ptxdist_logo.png

_images/rauc_safety_security.png
compare [|_sProductName” |

System

X509 Signature X509 Keyring

_images/yocto.png
yocto -

PROJECT

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

